9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Efficacy and Safety of Lower-Limb Plyometric Training in Older Adults: A Systematic Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The aging process is associated with a progressive decline of neuromuscular function, increased risk of falls and fractures, impaired functional performance, and loss of independence. Plyometric training may mitigate or even reverse such age-related deterioration; however, little research on the effects of plyometric exercises has been performed in older adults.

          Objective

          The objective of this systematic review was to evaluate the safety and efficacy of plyometric training in older adults.

          Methods

          Papers reporting on randomized trials of plyometric training in older adults (≥ 60 years) and published up to December 2017 were sought in the PubMed, SPORTDiscus, Scopus, and EMBASE databases, and their methodological quality was assessed using the Physiotherapy Evidence Database (PEDro) scale. A narrative synthesis of the findings is presented in this systematic review.

          Results

          Of the 2236 identified papers, 18 were included in the review, reporting on 12 different studies with a mean PEDro score of 6.0 (range 4–7). Altogether, 289 subjects (176 females and 113 males) were included in 15 intervention groups with plyometric components ( n = 8–36 per group); their mean age ranged from 58.4 to 79.4 years. The plyometric training lasted from 4 weeks to 12 months. Muscular strength, bone health, body composition, postural stability, and jump and physical performance were the most often reported outcomes. No study reported increased occurrence of injuries or other adverse events related to plyometric exercises.

          Conclusion

          Plyometric training is a feasible and safe training option with potential for improving various performance, functional, and health-related outcomes in older persons.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Dose–Response Relationships of Resistance Training in Healthy Old Adults: A Systematic Review and Meta-Analysis

          Background Resistance training (RT) is an intervention frequently used to improve muscle strength and morphology in old age. However, evidence-based, dose–response relationships regarding specific RT variables (e.g., training period, frequency, intensity, volume) are unclear in healthy old adults. Objectives The aims of this systematic review and meta-analysis were to determine the general effects of RT on measures of muscle strength and morphology and to provide dose–response relationships of RT variables through an analysis of randomized controlled trials (RCTs) that could improve muscle strength and morphology in healthy old adults. Data Sources A computerized, systematic literature search was performed in the electronic databases PubMed, Web of Science, and The Cochrane Library from January 1984 up to June 2015 to identify all RCTs related to RT in healthy old adults. Study Eligibility Criteria The initial search identified 506 studies, with a final yield of 25 studies. Only RCTs that examined the effects of RT in adults with a mean age of 65 and older were included. The 25 studies quantified at least one measure of muscle strength or morphology and sufficiently described training variables (e.g., training period, frequency, volume, intensity). Study Appraisal and Synthesis Methods We quantified the overall effects of RT on measures of muscle strength and morphology by computing weighted between-subject standardized mean differences (SMDbs) between intervention and control groups. We analyzed the data for the main outcomes of one-repetition maximum (1RM), maximum voluntary contraction under isometric conditions (MVC), and muscle morphology (i.e., cross-sectional area or volume or thickness of muscles) and assessed the methodological study quality by Physiotherapy Evidence Database (PEDro) scale. Heterogeneity between studies was assessed using I 2 and χ 2 statistics. A random effects meta-regression was calculated to explain the influence of key training variables on the effectiveness of RT in terms of muscle strength and morphology. For meta-regression, training variables were divided into the following subcategories: volume, intensity, and rest. In addition to meta-regression, dose–response relationships were calculated independently for single training variables (e.g., training frequency). Results RT improved muscle strength substantially (mean SMDbs = 1.57; 25 studies), but had small effects on measures of muscle morphology (mean SMDbs = 0.42; nine studies). Specifically, RT produced large effects in both 1RM of upper (mean SMDbs = 1.61; 11 studies) and lower (mean SMDbs = 1.76; 19 studies) extremities and a medium effect in MVC of lower (mean SMDbs = 0.76; four studies) extremities. Results of the meta-regression revealed that the variables “training period” (p = 0.04) and “intensity” (p < 0.01) as well as “total time under tension” (p < 0.01) had significant effects on muscle strength, with the largest effect sizes for the longest training periods (mean SMDbs = 2.34; 50–53 weeks), intensities of 70–79 % of the 1RM (mean SMDbs = 1.89), and total time under tension of 6.0 s (mean SMDbs = 3.61). A tendency towards significance was found for rest in between sets (p = 0.06), with 60 s showing the largest effect on muscle strength (mean SMDbs = 4.68; two studies). We also determined the independent effects of the remaining training variables on muscle strength. The following independently computed training variables are most effective in improving measures of muscle strength: a training frequency of two sessions per week (mean SMDbs = 2.13), a training volume of two to three sets per exercise (mean SMDbs = 2.99), seven to nine repetitions per set (mean SMDbs = 1.98), and a rest of 4.0 s between repetitions (SMDbs = 3.72). With regard to measures of muscle morphology, the small number of identified studies allowed us to calculate meta-regression for the subcategory training volume only. No single training volume variable significantly predicted RT effects on measures of muscle morphology. Additional training variables were independently computed to detect the largest effect for the single training variable. A training period of 50–53 weeks, a training frequency of three sessions per week, a training volume of two to three sets per exercise, seven to nine repetitions per set, a training intensity from 51 to 69 % of the 1RM, a total time under tension of 6.0 s, a rest of 120 s between sets, and a rest of 2.5 s between repetitions turned out to be most effective. Limitations The current results must be interpreted with caution because of the poor overall methodological study quality (mean PEDro score 4.6 points) and the considerable large heterogeneity (I 2 = 80 %, χ 2 = 163.1, df = 32, p < 0.01) for muscle strength. In terms of muscle morphology, our search identified nine studies only, which is why we consider our findings preliminary. While we were able to determine a dose–response relationship based on specific individual training variables with respect to muscle strength and morphology, it was not possible to ascertain any potential interactions between these variables. We recognize the limitation that the results may not represent one general dose–response relationship. Conclusions This systematic literature review and meta-analysis confirmed the effectiveness of RT on specific measures of upper and lower extremity muscle strength and muscle morphology in healthy old adults. In addition, we were able to extract dose–response relationships for key training variables (i.e., volume, intensity, rest), informing clinicians and practitioners to design effective RTs for muscle strength and morphology. Training period, intensity, time under tension, and rest in between sets play an important role in improving muscle strength and morphology and should be implemented in exercise training programs targeting healthy old adults. Still, further research is needed to reveal optimal dose–response relationships following RT in healthy as well as mobility limited and/or frail old adults.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Age-associated declines in muscle mass, strength, power, and physical performance: impact on fear of falling and quality of life.

            This 3-year longitudinal study among older adults showed that declining muscle mass, strength, power, and physical performance are independent contributing factors to increased fear of falling, while declines of muscle mass and physical performance contribute to deterioration of quality of life. Our findings reinforce the importance of preserving muscle health with advancing age.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis

              To examine the effects of stepping interventions on fall risk factors and fall incidence in older people.
                Bookmark

                Author and article information

                Contributors
                +420724600710 , tomas.vetrovsky@gmail.com
                Journal
                Sports Med
                Sports Med
                Sports Medicine (Auckland, N.z.)
                Springer International Publishing (Cham )
                0112-1642
                1179-2035
                2 November 2018
                2 November 2018
                2019
                : 49
                : 1
                : 113-131
                Affiliations
                [1 ]ISNI 0000 0004 1937 116X, GRID grid.4491.8, The Strength and Conditioning Laboratory, Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, , Charles University, ; Jose Martiho 269/31, 162 52 Prague 6, Czech Republic
                [2 ]ISNI 0000 0004 1937 116X, GRID grid.4491.8, Department of Sport Games, Faculty of Physical Education and Sport, , Charles University, ; Jose Martiho 269/31, 162 52 Prague 6, Czech Republic
                Author information
                http://orcid.org/0000-0003-2529-7069
                http://orcid.org/0000-0001-7297-8145
                http://orcid.org/0000-0003-2841-374X
                http://orcid.org/0000-0001-8325-0344
                Article
                1018
                10.1007/s40279-018-1018-x
                6349785
                30387072
                5d6b138b-7410-4b17-aad0-85288b31f080
                © Springer Nature Switzerland AG 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100007397, Univerzita Karlova v Praze;
                Award ID: PRIMUS/MED/17/05
                Award Recipient :
                Categories
                Systematic Review
                Custom metadata
                © Springer Nature Switzerland AG 2019

                Comments

                Comment on this article