7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diversity and coevolutionary dynamics in high-dimensional phenotype spaces

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We study macroevolutionary dynamics by extending microevolutionary competition models to long time scales. It has been shown that for a general class of competition models, gradual evolutionary change in continuous phenotypes (evolutionary dynamics) can be non-stationary and even chaotic when the dimension of the phenotype space in which the evolutionary dynamics unfold is high. It has also been shown that evolutionary diversification can occur along non-equilibrium trajectories in phenotype space. We combine these lines of thinking by studying long-term coevolutionary dynamics of emerging lineages in multi-dimensional phenotype spaces. We use a statistical approach to investigate the evolutionary dynamics of many different systems. We find: 1) for a given dimension of phenotype space, the coevolutionary dynamics tends to be fast and non-stationary for an intermediate number of coexisting lineages, but tends to stabilize as the evolving communities reach a saturation level of diversity; and 2) the amount of diversity at the saturation level increases rapidly (exponentially) with the dimension of phenotype space. These results have implications for theoretical perspectives on major macroevolutionary patterns such as adaptive radiation, long-term temporal patterns of phenotypic changes, and the evolution of diversity.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Species Interactions Alter Evolutionary Responses to a Novel Environment

          Introduction Understanding how species adapt to novel environments is an important task both for understanding the dynamics of living systems and for predicting biotic responses to anthropogenic changes in the natural environment [1]–[3]. However, most studies of evolutionary adaptation consider single species in isolation. Although this approach is useful for uncovering genetic mechanisms, virtually all species co-occur with many other species. Faced with a new abiotic environment, communities might respond by evolution of component species, but ecological changes in species' abundances and distributions can also occur. If ecological interactions such as competition affect evolutionary responses [4],[5], then results from single species studies might not accurately predict evolutionary dynamics in diverse assemblages. Although there has been growing interest in how evolution affects ecological dynamics [6]–[10], most studies have still considered single species or pairs of interacting species. In addition, the question of how ecological interactions affect evolutionary responses to novel abiotic environments has received even less attention [11],[12]. If ecological interactions among species are weak, then evolutionary changes should be the same as those predicted in single species studies. However, if species use overlapping resources or otherwise interact, the extent and type of evolutionary responses might differ from those predicted if the same set of species each adapted to the new abiotic conditions in isolation [13],[14]. Several mechanisms might influence evolutionary dynamics in mixtures of species. First, species in diverse communities might have their resource use restricted by competitors, lowering effective population sizes and therefore reducing the rate at which beneficial mutations arise and the species adapts to a novel environment [5],[15]. In this scenario, species in communities should adapt to the new environment as they would in isolation, but the rate of adaptation would be reduced. Second, if trait variation among species exceeds variation within species, a new abiotic environment might act on the relative abundance of different species (ecological sorting) rather than on genetic variation within species [4],[5]. In models of this mechanism, pre-adapted species increase in abundance at the expense of less well-adapted species and the average amount of evolution in surviving species is typically reduced compared to responses of the same species in monoculture (although in rare scenarios the amount of evolution can increase [4]). Third, there might be a trade-off between adaptation to biotic and abiotic components of the environment [16]. Such trade-offs might result from the production of costly adaptations involved in species interactions such as defences [17],[18] or from selective interference between adaptations to the biotic and abiotic environment [19]. In this case, species that evolved in communities should be less well adapted to the abiotic environment than if they adapted in isolation and vice versa. In the most extreme case, species might adapt to use resources generated by other species [20], in which case they will evolve entirely different resource use depending on whether other species are present. These mechanisms could change both the magnitude and direction of evolutionary change in communities compared to predictions from single species studies. However, evidence for an effect of diversity is currently scarce. Experiments have shown that diversity can inhibit evolution; for example, Brockhurst et al. [21] showed that niche occupation restricts adaptive radiation of a single bacterial strain. Similarly, Collins [16] found that diversity limits adaptation to elevated CO2 in algae and Perron et al. [22] showed that diversity limits the evolution of multi-drug resistance (although this effect was alleviated by horizontal transfer of resistance mutations). However, these studies considered genetic diversity within species rather than species diversity within communities. There is abundant evidence that coevolution drives fast evolution between species with strong ecological interactions [23],[24] and that pairwise coevolution can change the direction of evolution compared to adaptation in isolation [14]. Furthermore, studies of diffuse coevolution have shown that adaptation of a focal species to particular interacting species, such as insect herbivores, is influenced by interactions with other species, such as vertebrate herbivores [25]–[28]. For example, character displacement of limnetic and benthic species pairs of sticklebacks only occurred in lakes with low species diversity of other fish [29]. To the best of our knowledge, however, the evolution of interactions among multiple species in a community has not been investigated using an experimental evolution approach. Evolutionary dynamics in diverse systems will have important consequences for ecosystem functioning in altered environments. Ecosystem functions such as decomposition and productivity emerge from the degree to which species are adapted to their biotic and abiotic environments [30]–[32]. Following a change in the environment, ecosystem functioning might be disrupted either because the species abundances change or because component species fail to adapt to the new environmental optimum. Alternatively, coevolution among species might act to enhance ecosystem properties, for example if species evolve complementary resource use and thereby increase ecosystem productivity [33]. Understanding of these processes is needed to predict how ecosystem functioning will respond to environmental changes over evolutionary timescales. Here, we test whether species diversity influences environmental adaptation and ecosystem functioning using naturally co-occurring decomposer bacteria from temporary pools around the roots of beech trees (Fagus sylvatica), which have previously been used successfully for experimental ecology [34],[35]. We chose five species of bacteria differing in colony colour and shape so that each species could be isolated from species mixtures (Tables S1 and S2). Sequencing of 16S rDNA showed that isolates belong to five different families (Table S1). We refer to them as species since they represent genetically and phenotypically distinct clusters that co-occurred naturally. Monocultures of each species and polycultures containing all five species were allowed to adapt to laboratory conditions by regular serial transfer on beech-leaf extract (Figure 1). Laboratory conditions represent a new environment and differ from wild tree-holes in several ways: tree-holes receive a larger quantity and variety of resources, are spatially complex, and have an unpredictable input of water and leaves, whereas laboratory cultures experienced regular dilution with uniform medium in a shaken container. Growth assays were used to determine evolutionary responses. We predicted that species should adapt to laboratory conditions by evolving faster growth rates on the beech tea medium, but that the presence of other species might change the direction and extent of adaptation by one of the mechanisms outlined above. 10.1371/journal.pbio.1001330.g001 Figure 1 Experimental design for the evolution experiments. (i) Stocks of wild isolates were grown up, each comprising a single starting genotype of each species. (ii) Experiments were started with each species in monoculture or in polyculture (all five species mixed together). (iii) To stimulate active growth and promote adaptation to the laboratory conditions, each culture was diluted 20-fold in fresh medium twice weekly for 8 wk. Tubes were shaken to prevent the formation of biofilms and maintain spatial homogeneity. Numbers of generations ranged from 60.9 to 82.2 across cultures and effective population sizes ranged from 5.3×105 to 9.9×106 (Table S3). (iv) Final cultures were plated on agar. (v) Single colonies of each species were isolated for growth assays described in the main text. To measure species interactions and changes in resource use, our approach was to grow one species on beech tea, then to filter-sterilize the medium and to assay the growth of a second species on the “used” beech tea. If the second species used similar resources to the first (i.e., if their niches overlapped), the second species should grow less well on “used” beech tea than on “unused” beech tea because its resources would have been consumed. If the two species were specialized on different resources (i.e., occupied different niches), the second species should grow equally well on “used” and “unused” tea. Finally, if the second species used resources produced by the first (called facilitation or cross-feeding [36]), the second species should grow better on “used” tea than on “unused” tea. While this method does not provide direct information on competitive interactions in mixtures, it provides a tractable and reproducible measure of changes in resource use of each species during evolution. Because other types of interaction, such as direct inhibition by bacteriocides [37], might also affect growth rates, we also used nuclear magnetic resonance (NMR) spectroscopic profiling of “used” and “unused” tea to investigate changes in resource use directly. Finally, we tested whether adaptation to the presence of other species affected productivity (rate of production of CO2) by reassembling communities with different evolutionary histories using isolates that either evolved in monoculture or co-evolved in the same polyculture. If adaptation increased community productivity, we expected communities reassembled with isolates that evolved in polycultures to be more productive than those reassembled with isolates that had evolved in monoculture. Results Growth Rates on Beech Tea of Monoculture Isolates Although able to grow on beech tea in the lab at the start of the experiment, one species (E) dwindled to low cell densities during the evolution experiment (Table S3) and was excluded from growth assays and subsequent experiments because it failed to re-grow from frozen cultures. Species A to D were recoverable in all treatments and were used for subsequent experiments. Across species, final isolates that evolved in monoculture grew on average faster than ancestral isolates of the same species on unused beech tea (dark bars, first and second rows, Figure 2), consistent with the prediction that they adapted to laboratory conditions of serial dilution in beech tea medium by increasing growth rates on this medium. The effect was significant in species B, C and D, which grew between 47% and 120% faster after evolving in monoculture compared to their ancestral isolates. Growth rates of evolved monoculture isolates of species A were not significantly different from its ancestral isolate. Note that phenotypic plasticity and parental effects can be discounted as explanations for differences among treatments. In all our assays, frozen isolates were first grown in beech tea medium for 4 d ( = 4 to 6 generations, Table S3), and then an aliquot was taken from these cultures to start the assay cultures. Differences in phenotypes between treatments were therefore maintained after several generations of growth in identical environments and cannot be readily explained by phenotypically plastic responses. 10.1371/journal.pbio.1001330.g002 Figure 2 Maximum growth rates of isolates after evolution under each diversity treatment. Maximum rate of growth from low densities, VMAX , of each species grown on unused beech tea under assay conditions. Dark bars, growth rates of ancestral isolates. Mid grey bars, growth rates of monoculture isolates. Pale bars, growth rates of polyculture isolates. Standard error bars are shown. Tukey Honest Significant Difference test contrasts between treatments: *** p 0.95, which might indicate multiple peaks derived from the same compound. Contaminant peaks derived from methanol and acetonitrile were removed from the dataset. Variation in resource use and production across isolates was explored using principal components analysis of unscaled variances implemented with the prcomp() function in R [55]: we used unscaled rather than scaled variances to focus on compounds showing larger changes in their absolute concentrations. Productivity of Assembled Communities MicroResp kits were used to measure community respiration. Respired CO2 results in a change in colour of cresol red indicator dye suspended above each well of a 96-well plate. Ten replicates were used per treatment in a single plate and the experiment was repeated in triplicate. Each well contained 840 µl of 1/32× beech tea and 40 µl of each species from a stock culture of standard density. The plate was sealed and the change in optical density (OD) at 570 nm of the indicator gel measured after 6 h as recommended by the manufacturers [56]. The change in OD of blank wells (filled with 1 ml 1/32× beech tea) was used to account for the base level of CO2 in the vials. The rate of CO2 respiration per ml of culture medium was calculated using the formula provided in the MicroResp manual [56]. Statistical Analysis To calibrate OD600 in terms of cell density per ml of culture medium [57], we performed serial dilution and colony counts of stock cultures of isolates of each species from each treatment. We fitted a linear model with log (colony count)/ml as the response variable and species, treatment, and OD600 as explanatory variables, including interaction terms. The model simplified to retain species and OD600, but no interaction terms (i.e., different intercept for calibration line for each species, but same slopes, F 4,67 = 32.9, p<0.0001, r 2 = 0.64, Figure S8). The fitted lines were used to calibrate in units of log(number of cells) per ml. We used linear mixed effects models of repeated measures of cell density over time to compare growth of bacteria among treatments and species in the growth assays (Text S1). To report the direction and effect size of differences among treatments, we used the rate of change in density over the first 48 h as a simple measure of VMAX —that is, the maximum rate of growth from low densities (Figure S6). Analysis of variance (ANOVA) and Tukey's Honest Significant Difference tests were used to identify significant contrasts between particular treatments of interest. There was no evidence of different evolutionary trends in carrying capacity of isolates (i.e., using density at 96 h) as opposed to growth rate (Figure S1 versus Figure S7). To test for significant differences in NMR profiles between treatments, we used Monte Carlo simulation tests shuffling profiles randomly among species and treatments. The Euclidean distance between samples was recorded, and the mean distance between both evolved treatments in turn and ancestral isolates was used to measure the amount of evolution, and the mean distance between each species within a treatment was used to measure the amount of divergence in resource use among species. Observed values were compared to randomised values from 10,000 random permutations. Two-tailed tests were used. Supporting Information Figure S1 Maximum growth rates for each species and evolution treatment when grown in “used” and “unused” substrate. Boxplots of maximum growth rates, VMAX , in cell doublings per day across evolution treatments, species, and substrates. The dark line shows the median, the box limits show the inter-quartile range, and whiskers/points indicate extreme values. (TIF) Click here for additional data file. Figure S2 Amounts of compounds identified from distinct peaks in the NMR spectrum of unused beech tea. Bars show the size of the major peak for each distinct compound relative to the size of the standard, DSS; hence peak heights are dimensionless. The location of each peak on the spectrum is shown after each name (peak shift in parts per million). (TIF) Click here for additional data file. Figure S3 NMR peaks for each species and treatment. The difference in the size of NMR peaks between tea used by ancestral (dark grey), monoculture (mid grey), and polyculture (light grey) in turn and the size of peaks in unused beech tea. Positive values indicate production of a compound, and negative values indicate consumption of a compound. Peak sizes are expressed relative to the size of the standard, DSS, and hence are dimensionless. (TIF) Click here for additional data file. Figure S4 Contribution of each compound to variation between treatments. Loadings of the first four principal components of resource use and production of the four surviving species across ancestral, monoculture, and polyculture treatments. The input data were the difference between the size of the peak in medium used by the isolate and the size of the peak in the beech tea (i.e., the data in Figure S3). Bars indicate the correlation coefficient between variation in each compound and the relevant principal component. The percentage of total variation described by each principal component is shown above each plot; together they explain 90.1% of the total variation. (TIF) Click here for additional data file. Figure S5 Changes in substrate composition after use by a first species and then species B or D. The difference in the relative size of NMR peaks between tea used by a first species' ancestral (red), monoculture (green), and polyculture (blue) in turn and the relative size of peaks in unused beech tea; together with the change in the size of the peak after a second species grew on medium already used by the first species (then filter sterilised) for the same treatments (ancestral, pink; monoculture, light green; polyculture, light blue). The order of bars for each compound is first species ancestral, second species ancestral, first species monoculture, second species monoculture, first species polyculture, and second species polyculture. Positive values indicate production of a compound, and negative values indicate consumption of a compound relative to the starting medium. To improve clarity of the figure and focus on compounds of interest for cross-feeding, only compounds in which at least one isolate generated an increase in peak size of 0.5 are shown. Only species B and species D were used as the second species, chosen to represent two species showing different results in the growth assays. Evidence of evolved cross-feeding in polyculture is apparent when high blue peaks (generation of the compound by the first species) are associated with low purple peaks (use of the compound by the second species). For example, the species A polyculture isolate produces formate, which in turn is used up by both species B and D. (TIF) Click here for additional data file. Figure S6 Growth of replicates of each species in assays on unused beech tea across the three treatments. The y-axes are log(cell counts per ml), and x-axes are time since start in hours. Ancestral isolates of all four species grew linearly over the assay period on unused beech tea (ANOVA comparing a model with time as a factor versus a model with time as a continuous variable, likelihood ratio = 6.9, df = 13 and 21, p = 0.55). The monoculture isolates displayed significantly non-linear growth (ANOVA comparing models with time as a factor and as a continuous variable, L-ratio 39.3, p<0.0001). In species A, B, and C there was a reduction in growth rate between day 2 and 3 followed by recovery by day 4. In species D, there was a successive decline in growth rate. In each case, growth between day 0 and day 2 was faster than at any later period. Polyculture isolates grew linearly over the assay period (ANOVA comparing models with time as a factor and as a continuous variable, L-ratio 27.7, p<0.001). (TIF) Click here for additional data file. Figure S7 Boxplots of the density after 4 d (log10) across species and substrates. The dark line shows the median, the box limits show the inter-quartile range, and whiskers/points indicate extreme values. Key findings based on comparing Vmax remain the same when comparing amount of growth by day 4: species A grows well on unused tea in ancestral and monoculture treatments, but not when it has evolved in polyculture. Species B and C shift from having reduced growth on used tea in ancestral and monoculture isolates to having enhanced growth in polyculture treatments. Species D evolves to have stronger negative effects of used tea in monoculture than in ancestral isolates, but evolves even better growth on unused tea when it evolves in polycultures than in either ancestral or monoculture isolates. (TIF) Click here for additional data file. Figure S8 Scatter plot showing the linear relationship between OD600 and log colony counts. The model simplified to retain species and OD600, but no interaction terms (i.e., different intercept for calibration line for each species, but same slopes, F 4,67 = 32.9, p<0.0001, r 2 = 0.64). The fitted lines were used to calibrate in units of log(number of cells) per ml. (TIF) Click here for additional data file. Table S1 Molecular identification of bacterial isolates. (DOCX) Click here for additional data file. Table S2 Description and photographs of growth morphology of each species on agar plates. (DOCX) Click here for additional data file. Table S3 Densities, doubling rates, and effective population sizes of each species during the evolution experiments. (DOCX) Click here for additional data file. Table S4 Linear mixed effects model comparisons. (DOCX) Click here for additional data file. Text S1 Additional methods and references. (DOC) Click here for additional data file.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The million-year wait for macroevolutionary bursts.

            We lack a comprehensive understanding of evolutionary pattern and process because short-term and long-term data have rarely been combined into a single analytical framework. Here we test alternative models of phenotypic evolution using a dataset of unprecedented size and temporal span (over 8,000 data points). The data are body-size measurements taken from historical studies, the fossil record, and among-species comparative data representing mammals, squamates, and birds. By analyzing this large dataset, we identify stochastic models that can explain evolutionary patterns on both short and long timescales and reveal a remarkably consistent pattern in the timing of divergence across taxonomic groups. Even though rapid, short-term evolution often occurs in intervals shorter than 1 Myr, the changes are constrained and do not accumulate over time. Over longer intervals (1-360 Myr), this pattern of bounded evolution yields to a pattern of increasing divergence with time. The best-fitting model to explain this pattern is a model that combines rare but substantial bursts of phenotypic change with bounded fluctuations on shorter timescales. We suggest that these rare bursts reflect permanent changes in adaptive zones, whereas the short-term fluctuations represent local variations in niche optima due to restricted environmental variation within a stable adaptive zone.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Comparative multi-omics systems analysis of Escherichia coli strains B and K-12

              Background Elucidation of a genotype-phenotype relationship is critical to understand an organism at the whole-system level. Here, we demonstrate that comparative analyses of multi-omics data combined with a computational modeling approach provide a framework for elucidating the phenotypic characteristics of organisms whose genomes are sequenced. Results We present a comprehensive analysis of genome-wide measurements incorporating multifaceted holistic data - genome, transcriptome, proteome, and phenome - to determine the differences between Escherichia coli B and K-12 strains. A genome-scale metabolic network of E. coli B was reconstructed and used to identify genetic bases of the phenotypes unique to B compared with K-12 through in silico complementation testing. This systems analysis revealed that E. coli B is well-suited for production of recombinant proteins due to a greater capacity for amino acid biosynthesis, fewer proteases, and lack of flagella. Furthermore, E. coli B has an additional type II secretion system and a different cell wall and outer membrane composition predicted to be more favorable for protein secretion. In contrast, E. coli K-12 showed a higher expression of heat shock genes and was less susceptible to certain stress conditions. Conclusions This integrative systems approach provides a high-resolution system-wide view and insights into why two closely related strains of E. coli, B and K-12, manifest distinct phenotypes. Therefore, systematic understanding of cellular physiology and metabolism of the strains is essential not only to determine culture conditions but also to design recombinant hosts.
                Bookmark

                Author and article information

                Journal
                2017-01-26
                Article
                10.1086/689891
                1701.07861
                5db8b3e7-3053-4dc4-945b-03d0ec798c2a

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                The American Naturalist 2017 189:2, 105-120
                49 pages, 6 figures, and 5 videos, please open pdf with Acrobat to see the embedded movies
                q-bio.PE

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article