2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A mechanism for differential sorting of the planar cell polarity proteins Frizzled6 and Vangl2 at thetrans-Golgi network

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d342085e260">In planar cell polarity (PCP), the epithelial cells are polarized along the plane of the cell surface perpendicular to the classical apical–basal axis, a process mediated by several conserved signaling receptors. Two PCP-signaling proteins, VANGL planar cell polarity protein 2 (Vangl2) and Frizzled6 (Fzd6), are located asymmetrically on opposite boundaries of the cell. Examining sorting of these two proteins at the <i>trans</i>-Golgi network (TGN), we demonstrated previously that the GTP-binding protein ADP-ribosylation factor–related protein 1 (Arfrp1) and the clathrin-associated adaptor protein complex 1 (AP-1) are required for Vangl2 transport from the TGN. In contrast, TGN export of Frizzled6 does not depend on Arfrp1 or AP-1. Here, to further investigate the TGN sorting process in mammalian cells, we reconstituted release of Vangl2 and Frizzled6 from the TGN into vesicles <i>in vitro</i>. Immunoblotting of released vesicles indicated that Vangl2 and Frizzled6 exit the TGN in separate compartments. Knockdown analysis revealed that a clathrin adaptor, epsinR, regulates TGN export of Frizzled6 but not of Vangl2. Protein interaction analysis suggested that epsinR forms a stable complex with clathrin and that this complex interacts with a conserved polybasic motif in the Frizzled6 cytosolic domain to package Frizzled6 into transport vesicles. Moreover, we found that Frizzled6–epsinR binding dissociates epsinR from AP-1, which may separate these two cargo adaptors from each other to perform distinct cargo-sorting functions. Our results suggest that Vangl2 and Frizzled6 are packaged into separate vesicles that are regulated by different clathrin adaptors at the TGN, which may contribute to their asymmetric localizations. </p>

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles.

          We have characterized the mechanisms of cargo selection into ER-derived vesicles by the COPII subunit Sec24p. We identified a site on Sec24p that recognizes the v-SNARE Bet1p and show that packaging of a number of cargo molecules is disrupted when mutations are introduced at this site. Surprisingly, cargo proteins affected by these mutations did not share a single common sorting signal, nor were proteins sharing a putative class of signal affected to the same degree. We show that the same site is conserved as a cargo-interaction domain on the Sec24p homolog Lst1p, which only packages a subset of the cargoes recognized by Sec24p. Finally, we identified an additional mutation that defines another cargo binding domain on Sec24p, which specifically interacts with the SNARE Sec22p. Together, our data support a model whereby Sec24p proteins contain multiple independent cargo binding domains that allow for recognition of a diverse set of sorting signals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells.

            In the mouse, Frizzled3 (Fz3) and Frizzled6 (Fz6) have been shown previously to control axonal growth and guidance in the CNS and hair patterning in the skin, respectively. Here, we report that Fz3 and Fz6 redundantly control neural tube closure and the planar orientation of hair bundles on a subset of auditory and vestibular sensory cells. In the inner ear, Fz3 and Fz6 proteins are localized to the lateral faces of sensory and supporting cells in all sensory epithelia in a pattern that correlates with the axis of planar polarity. Interestingly, the polarity of Fz6 localization with respect to the asymmetric position of the kinocilium is reversed between vestibular hair cells in the cristae of the semicircular canals and auditory hair cells in the organ of Corti. Vangl2, one of two mammalian homologs of the Drosophila planar cell polarity (PCP) gene van Gogh/Strabismus, is also required for correct hair bundle orientation on a subset of auditory sensory cells and on all vestibular sensory cells. In the inner ear of a Vangl2 mutant (Looptail; Lp), Fz3 and Fz6 proteins accumulate to normal levels but do not localize correctly at the cell surface. These results support the view that vertebrates and invertebrates use similar molecular mechanisms to control a wide variety of PCP-dependent developmental processes. This study also establishes the vestibular sensory epithelium as a tractable tissue for analyzing PCP, and it introduces the use of genetic mosaics for determining the absolute orientation of PCP proteins in mammals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail.

              Neural tube defects (NTDs) such as spina bifida and anencephaly are common congenital malformations in humans (1/1,000 births) that result from failure of the neural tube to close during embryogenesis. The etiology of NTDs is complex, with both genetic and environmental contributions; the genetic component has been extensively studied with mouse models. Loop-tail (Lp) is a semidominant mutation on mouse chromosome 1 (ref. 4). In the two known Lp alleles (Lp, Lpm1Jus), heterozygous mice exhibit a characteristic looped tail, and homozygous embryos show a completely open neural tube in the hindbrain and spinal region, a condition similar to the severe craniorachischisis defect in humans. Morphological and neural patterning studies indicate a role for the Lp gene product in controlling early morphogenesis and patterning of both axial midline structures and the developing neural plate. The 0.6-cM/0.7-megabase (Mb) Lp interval is delineated proximally by D1Mit113/Apoa2/Fcer1g and distally by Fcer1a/D1Mit149/Spna1 and contains a minimum of 17 transcription units. One of these genes, Ltap, encodes a homolog of Drosophila Strabismus/Van Gogh (Stbm/Vang), a component of the frizzled/dishevelled tissue polarity pathway. Ltap is expressed broadly in the neuroectoderm throughout early neurogenesis and is altered in two independent Lp alleles, identifying this gene as a strong candidate for Lp.
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                June 01 2018
                June 01 2018
                June 01 2018
                April 17 2018
                : 293
                : 22
                : 8410-8427
                Article
                10.1074/jbc.RA118.001906
                5986227
                29666182
                5dbfe120-d527-4d92-a487-b3e85a051949
                © 2018
                History

                Comments

                Comment on this article