27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      ASK1 Is Essential for JNK/SAPK Activation by TRAF2

      , , , , , , ,
      Molecular Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tumor necrosis factor (TNF)-induced activation of the c-jun N-terminal kinase (JNK, also known as SAPK; stress-activated protein kinase) requires TNF receptor-associated factor 2 (TRAF2). The apoptosis signal-regulating kinase 1 (ASK1) is activated by TNF and stimulates JNK activation. Here we show that ASK1 interacts with members of the TRAF family and is activated by TRAF2, TRAF5, and TRAF6 overexpression. A truncated derivative of TRAF2, which inhibits JNK activation by TNF, blocks TNF-induced ASK1 activation. A catalytically inactive mutant of ASK1 is a dominant-negative inhibitor of TNF- and TRAF2-induced JNK activation. In untransfected mammalian cells, ASK1 rapidly associates with TRAF2 in a TNF-dependent manner. Thus, ASK1 is a mediator of TRAF2-induced JNK activation.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1.

          Apoptosis signal-regulating kinase (ASK) 1 was recently identified as a mitogen-activated protein (MAP) kinase kinase kinase which activates the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways and is required for tumor necrosis factor (TNF)-alpha-induced apoptosis; however, the mechanism regulating ASK1 activity is unknown. Through genetic screening for ASK1-binding proteins, thioredoxin (Trx), a reduction/oxidation (redox)-regulatory protein thought to have anti-apoptotic effects, was identified as an interacting partner of ASK1. Trx associated with the N-terminal portion of ASK1 in vitro and in vivo. Expression of Trx inhibited ASK1 kinase activity and the subsequent ASK1-dependent apoptosis. Treatment of cells with N-acetyl-L-cysteine also inhibited serum withdrawal-, TNF-alpha- and hydrogen peroxide-induced activation of ASK1 as well as apoptosis. The interaction between Trx and ASK1 was found to be highly dependent on the redox status of Trx. Moreover, inhibition of Trx resulted in activation of endogenous ASK1 activity, suggesting that Trx is a physiological inhibitor of ASK1. The evidence that Trx is a negative regulator of ASK1 suggests possible mechanisms for redox regulation of the apoptosis signal transduction pathway as well as the effects of antioxidants against cytokine- and stress-induced apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways.

            Mitogen-activated protein (MAP) kinase cascades are activated in response to various extracellular stimuli, including growth factors and environmental stresses. A MAP kinase kinase kinase (MAPKKK), termed ASK1, was identified that activated two different subgroups of MAP kinase kinases (MAPKK), SEK1 (or MKK4) and MKK3/MAPKK6 (or MKK6), which in turn activated stress-activated protein kinase (SAPK, also known as JNK; c-Jun amino-terminal kinase) and p38 subgroups of MAP kinases, respectively. Overexpression of ASK1 induced apoptotic cell death, and ASK1 was activated in cells treated with tumor necrosis factor-alpha (TNF-alpha). Moreover, TNF-alpha-induced apoptosis was inhibited by a catalytically inactive form of ASK1. ASK1 may be a key element in the mechanism of stress- and cytokine-induced apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways.

              Tumor necrosis factor (TNF) can induce apoptosis and activate NF-kappa B through signaling cascades emanating from TNF receptor 1 (TNFR1). TRADD is a TNFR1-associated signal transducer that is involved in activating both pathways. Here we show that TRADD directly interacts with TRAF2 and FADD, signal transducers that activate NF-kappa B and induce apoptosis, respectively. A TRAF2 mutant lacking its N-terminal RING finger domain is a dominant-negative inhibitor of TNF-mediated NF-kappa B activation, but does not affect TNF-induced apoptosis. Conversely, a FADD mutant lacking its N-terminal 79 amino acids is a dominant-negative inhibitor of TNF-induced apoptosis, but does not inhibit NF-kappa B activation. Thus, these two TNFR1-TRADD signaling cascades appear to bifurcate at TRADD.
                Bookmark

                Author and article information

                Journal
                Molecular Cell
                Molecular Cell
                Elsevier BV
                10972765
                September 1998
                September 1998
                : 2
                : 3
                : 389-395
                Article
                10.1016/S1097-2765(00)80283-X
                9774977
                5e921382-cc3d-43d7-8eb9-04986fe83fda
                © 1998

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article