31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces

      ,
      The ISME Journal
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Molecular ecological surveys of the human gut microbiota to date have focused on the prokaryotic fraction of the community and have revealed a remarkable degree of bacterial diversity and functionality. However, there is a dearth of information on the eukaryotic composition of the microbiota, and no culture-independent sequence-based surveys of human faeces are available. Culture-independent analyses based on DNA extraction and polymerase chain reaction targeting both the total eukaryotic 18S rRNA genes and fungal internal transcribed regions (ITS), together with culture-dependent analyses of fungi, were performed on a group of healthy volunteers. Temporal analysis was also included wherever possible. Collectively, the data presented in this study indicate that eukaryotic diversity of the human gut is low, largely temporally stable and predominated by different subtypes of Blastocystis. Specific analyses of the fungal populations indicate that a disparity exists between the cultivable fraction, which is dominated by Candida sp, and culture-independent analysis, where sequences identical to members of the genera Gloeotinia/Paecilomyces and Galactomyces were most frequently retrieved from both fungal ITS profiles and subsequent clone libraries. Collectively, these results highlight the presence of unprecedented intestinal eukaryotic inhabitants whose functional roles are as yet unknown in healthy individuals. Furthermore, differences between results obtained from traditionally employed culture-based methods and those obtained from culture-independent techniques highlight similar anomalies to that encountered when first analysing the bacterial diversity of the human faecal microbiota using culture-independent surveys.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Symbiotic bacteria direct expression of an intestinal bactericidal lectin.

          The mammalian intestine harbors complex societies of beneficial bacteria that are maintained in the lumen with minimal penetration of mucosal surfaces. Microbial colonization of germ-free mice triggers epithelial expression of RegIIIgamma, a secreted C-type lectin. RegIIIgamma binds intestinal bacteria but lacks the complement recruitment domains present in other microbe-binding mammalian C-type lectins. We show that RegIIIgamma and its human counterpart, HIP/PAP, are directly antimicrobial proteins that bind their bacterial targets via interactions with peptidoglycan carbohydrate. We propose that these proteins represent an evolutionarily primitive form of lectin-mediated innate immunity, and that they reveal intestinal strategies for maintaining symbiotic host-microbial relationships.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A molecular view of microbial diversity and the biosphere.

            N Pace (1997)
            Over three decades of molecular-phylogenetic studies, researchers have compiled an increasingly robust map of evolutionary diversification showing that the main diversity of life is microbial, distributed among three primary relatedness groups or domains: Archaea, Bacteria, and Eucarya. The general properties of representatives of the three domains indicate that the earliest life was based on inorganic nutrition and that photosynthesis and use of organic compounds for carbon and energy metabolism came comparatively later. The application of molecular-phylogenetic methods to study natural microbial ecosystems without the traditional requirement for cultivation has resulted in the discovery of many unexpected evolutionary lineages; members of some of these lineages are only distantly related to known organisms but are sufficiently abundant that they are likely to have impact on the chemistry of the biosphere.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Yeast interactions and wine flavour.

              Wine is the product of complex interactions between fungi, yeasts and bacteria that commence in the vineyard and continue throughout the fermentation process until packaging. Although grape cultivar and cultivation provide the foundations of wine flavour, microorganisms, especially yeasts, impact on the subtlety and individuality of the flavour response. Consequently, it is important to identify and understand the ecological interactions that occur between the different microbial groups, species and strains. These interactions encompass yeast-yeast, yeast-filamentous fungi and yeast-bacteria responses. The surface of healthy grapes has a predominance of Aureobasidium pullulans, Metschnikowia, Hanseniaspora (Kloeckera), Cryptococcus and Rhodotorula species depending on stage of maturity. This microflora moderates the growth of spoilage and mycotoxigenic fungi on grapes, the species and strains of yeasts that contribute to alcoholic fermentation, and the bacteria that contribute to malolactic fermentation. Damaged grapes have increased populations of lactic and acetic acid bacteria that impact on yeasts during alcoholic fermentation. Alcoholic fermentation is characterised by the successional growth of various yeast species and strains, where yeast-yeast interactions determine the ecology. Through yeast-bacterial interactions, this ecology can determine progression of the malolactic fermentation, and potential growth of spoilage bacteria in the final product. The mechanisms by which one species/strain impacts on another in grape-wine ecosystems include: production of lytic enzymes, ethanol, sulphur dioxide and killer toxin/bacteriocin like peptides; nutrient depletion including removal of oxygen, and production of carbon dioxide; and release of cell autolytic components. Cell-cell communication through quorum sensing molecules needs investigation.
                Bookmark

                Author and article information

                Journal
                The ISME Journal
                ISME J
                Springer Science and Business Media LLC
                1751-7362
                1751-7370
                December 2008
                July 31 2008
                December 2008
                : 2
                : 12
                : 1183-1193
                Article
                10.1038/ismej.2008.76
                18670396
                5f614120-57ff-4199-839e-0cf3ccecc3ca
                © 2008

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article