1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atypical Serogroup IVb-v1 of Listeria monocytogenes Assigned to New ST2801, Widely Spread and Persistent in the Environment of a Pork-Meat Producing Plant of Central Italy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we characterized 84 Listeria monocytogenes (Lm) strains having an atypical IVb-v1 profile and isolated in a meat producing plant of Central Italy. They were assigned to the new MLST type ST2801 (CC218). The new ST was widespread in the food-producing environment where it was able to persist for over a year even after cleaning and sanitation. Cluster analysis identified three main clusters genetically close to each other (0–22 allelic differences and 0–28 SNPs) from two different cgMLST types, suggesting a common source. The coexistence of closely related clusters over time could be the result of a different evolution path starting from a common ancestor first introduced in the plant and/or the consequence of the repetitive reintroduction of closely related clones probably by raw materials. All the strains presented several determinants for heavy metals resistance, stress response, biofilm production, and multidrug efflux pumps with no significant differences among the clusters. A total of 53 strains carried pLI100 and the j1776 plasmids, while in one strain, the pLM33 was found in addition to pLI100. Only the strains carrying plasmids presented cadA and cadC for cadmium resistance and the mco gene encoding a multicopper oxidase and gerN for an additional Na+/H+-K+ antiporter. All the strains presented a virulence profile including a full-length inlA gene and the additional LIPI-3. The isolation of a new ST with a large pattern of stress-adaptation genes and able to persist is an important contribution to deepening the current knowledge on the uncommon IVb-v1 and in general on the genomic diversity of Lm.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.

            The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prokka: rapid prokaryotic genome annotation.

              T Seemann (2014)
              The multiplex capability and high yield of current day DNA-sequencing instruments has made bacterial whole genome sequencing a routine affair. The subsequent de novo assembly of reads into contigs has been well addressed. The final step of annotating all relevant genomic features on those contigs can be achieved slowly using existing web- and email-based systems, but these are not applicable for sensitive data or integrating into computational pipelines. Here we introduce Prokka, a command line software tool to fully annotate a draft bacterial genome in about 10 min on a typical desktop computer. It produces standards-compliant output files for further analysis or viewing in genome browsers. Prokka is implemented in Perl and is freely available under an open source GPLv2 license from http://vicbioinformatics.com/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                27 June 2022
                2022
                : 13
                : 930895
                Affiliations
                [1] 1Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati,” Perugia , Italy
                [2] 2Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale , Teramo, Italy
                [3] 3Centro di Referenza Nazionale per Sequenze Genomiche di Microrganismi Patogeni, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale , Teramo, Italy
                Author notes

                Edited by: Tiziana Nardi, Council for Agricultural Research and Economics (CREA), Italy

                Reviewed by: Itumeleng Matle, Agricultural Research Council of South Africa (ARC-SA), South Africa; Frederique Pasquali, University of Bologna, Italy

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2022.930895
                9271897
                35832815
                5f64f990-95fc-4339-a3fe-efd0c60004c0
                Copyright © 2022 Guidi, Lorenzetti, Centorotola, Torresi, Cammà, Chiaverini, Pomilio and Blasi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 April 2022
                : 06 June 2022
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 78, Pages: 11, Words: 8387
                Funding
                Funded by: Ministero della Salute, doi 10.13039/501100003196;
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                listeria monocytogenes,serogroup ivb-v1,st2801 (cc218),food producing environment,persistence,wgs typing,environmental sampling

                Comments

                Comment on this article