24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dectin-1 Is Expressed in Human Lung and Mediates the Proinflammatory Immune Response to Nontypeable Haemophilus influenzae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The C-type lectin receptor Dectin-1 is expressed mainly on myeloid cells mediating the immune response targeting respiratory pathogens such as Aspergillus fumigatus and Mycobacterium tuberculosis. The pulmonary epithelium serves as an important interface for interactions between these pathogens and the respiratory tract. Therefore, we analyzed the expression pattern of Dectin-1 in the human lung. Immunohistochemically stained human lung sections from 17 out of 19 individuals were positive for Dectin-1, which was expressed mainly apically on bronchial and alveolar epithelium. Our results showed no correlation with chronic obstructive pulmonary disease (COPD) or the smoking habits of the patients. Nontypeable Haemophilus influenzae (NTHI), an important bacterial pathogen of the respiratory tract with significant importance in COPD, has also been proposed to be recognized by Dectin-1, suggesting a possible impact on the NTHI-dependent immune response in human airways. Therefore, the involvement of Dectin-1 in NTHI-triggered cytokine responses was investigated in primary normal human bronchial epithelial (NHBE) cells and in the A549 cell line stably transfected with Dectin-1. The presence of Dectin-1 significantly increased cytokine release in response to NTHI in NHBE and A549 cells. In addition, phosphorylation of the Dectin-1 hem-immunoreceptor tyrosine-based activation motif (hemITAM) was essential for the Dectin-1-triggered response to NTHI in A549 cells. In conclusion, in human airways, epithelium-expressed Dectin-1 may play a significant role in generating an NTHI-mediated, proinflammatory immune response.

          IMPORTANCE

          In this study, we demonstrated, for the first time, the expression of Dectin-1 on human lung tissues and, in particular, pulmonary epithelium by making use of immunohistochemical staining. The epithelial lining of the human airways is an important interface for host-pathogen interactions. Therefore, our data suggest that epithelium-expressed Dectin-1 is of considerable importance for the interaction of the human airways with pathogens detected by this receptor, such as A. fumigatus and M. tuberculosis. Moreover, we further demonstrated that, in pulmonary epithelial cells, Dectin-1 enhances the proinflammatory immune response to NTHI. In COPD patients, NTHI is a major cause of respiratory tract infections and is associated with proinflammatory immune responses in the lower airways. Therefore, our data suggest that the functional interaction of Dectin-1 with NTHI in human airways may have an important impact on the pathogenesis of COPD.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          Airway mucus function and dysfunction.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Signalling through C-type lectin receptors: shaping immune responses

            Key Points Crosstalk between pattern recognition receptors (PRRs) expressed by dendritic cells orchestrates T helper (TH) cell differentiation through the induction of specific cytokine expression profiles, tailored to invading pathogens. C-type lectin receptors (CLRs) have an important role in orchestrating the induction of signalling pathways that regulate adaptive immune responses. CLRs can control adaptive immunity at various levels by inducing signalling on their own, through crosstalk with other PRRs or by inducing carbohydrate-specific signalling pathways. DC-specific ICAM3-grabbing non-integrin (DC-SIGN) interacts with mannose-carrying pathogens including Mycobacterium tuberculosis, HIV-1, measles virus and Candida albicans to activate the serine/threonine protein kinase RAF1. RAF1 signalling leads to the acetylation of Toll-like receptor (TLR)-activated nuclear factor-κB (NF-κB) subunit p65 and affects cytokine expression, such as inducing the upregulation of interleukin-10 (IL-10). DC-associated C-type lectin 1 (dectin 1) triggering by a broad range of fungal pathogens, such as C. albicans, Aspergillus fumigatus and Pneumocystis carinii, results in protective antifungal immunity through the crosstalk of two independent signalling pathways — one through spleen tyrosine kinase (SYK) and one through RAF1 — that are essential for the expression of TH1 and TH17 cell polarizing cytokines. Crosstalk between the SYK and RAF1 pathways is both synergistic and antagonizing to fine-tune NF-κB activity: although Ser276 phosphorylation of p65 leads to enhanced transcriptional activity of p65 itself through acetylation, it also inhibits the transcriptional activity of the NF-κB subunit RELB by sequestering it in p65–RELB dimers, which are transcriptionally inactive. The diversity in CLR-mediated signalling provides some major challenges for the researches to elucidate and manipulate the signalling properties of this exciting family of receptors. However, the recent advances strongly support the use of CLR targeting vaccination strategies using dendritic cells to induce or redirect adaptive immune responses as well as improve antigen delivery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dectin-1: a signalling non-TLR pattern-recognition receptor.

              Dectin-1 is a natural killer (NK)-cell-receptor-like C-type lectin that is thought to be involved in innate immune responses to fungal pathogens. This transmembrane signalling receptor mediates various cellular functions, from fungal binding, uptake and killing, to inducing the production of cytokines and chemokines. These activities could influence the resultant immune response and can, in certain circumstances, lead to autoimmunity and disease. As I discuss here, understanding the molecular mechanisms behind these functions has revealed new concepts, including collaborative signalling with the Toll-like receptors (TLRs) and the use of spleen tyrosine kinase (SYK), that have implications for the role of other non-TLR pattern-recognition receptors in immunity.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                26 August 2014
                Sep-Oct 2014
                : 5
                : 5
                : e01492-14
                Affiliations
                [ a ]Septomics Research Center, Jena University Hospital, Jena, Germany
                [ b ]Institute of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, Berlin, Germany
                [ c ]Center for Sepsis Control and Care (CSCC), University Hospital Jena, Jena, Germany
                [ d ]Surgical Department, Thoraxklinik, Heidelberg University, Member of the German Center for Lung Research, Heidelberg, Germany
                [ e ]Department of Internal Medicine V—Pulmonology, Allergology, Respiratory Intensive Care Medicine, University of the Saarland, Homburg Saar, Germany
                [ f ]Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
                Author notes
                Address correspondence to Hortense Slevogt, Hortense.Slevogt@ 123456med.uni-jena.de .

                Invited Editor Gordon Brown, University of Aberdeen Editor Arturo Zychlinsky, Max Planck Institute for Infection Biology

                Article
                mBio01492-14
                10.1128/mBio.01492-14
                4173778
                25161190
                5fa43a02-6031-49a3-a157-9203e630bd20
                Copyright © 2014 Heyl et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 17 June 2014
                : 30 July 2014
                Page count
                Pages: 9
                Categories
                Research Article
                Custom metadata
                September/October 2014

                Life sciences
                Life sciences

                Comments

                Comment on this article