Blog
About

7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-latency interhemispheric interactions between motor-related areas and the primary motor cortex: a dual site TMS study

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The primary motor cortex (M1) is highly influenced by premotor/motor areas both within and across hemispheres. Dual site transcranial magnetic stimulation (dsTMS) has revealed interhemispheric interactions mainly at early latencies. Here, we used dsTMS to systematically investigate long-latency causal interactions between right-hemisphere motor areas and the left M1 (lM1). We stimulated lM1 using a suprathreshold test stimulus (TS) to elicit motor-evoked potentials (MEPs) in the right hand. Either a suprathreshold or a subthreshold conditioning stimulus (CS) was applied over the right M1 (rM1), the right ventral premotor cortex (rPMv), the right dorsal premotor cortex (rPMd) or the supplementary motor area (SMA) prior to the TS at various CS-TS inter-stimulus intervals (ISIs: 40–150 ms). The CS strongly affected lM1 excitability depending on ISI, CS site and intensity. Inhibitory effects were observed independently of CS intensity when conditioning PMv, rM1 and SMA at a 40-ms ISI, with larger effects after PMv conditioning. Inhibition was observed with suprathreshold PMv and rM1 conditioning at a 150-ms ISI, while site-specific, intensity-dependent facilitation was detected at an 80-ms ISI. Thus, long-latency interhemispheric interactions, likely reflecting indirect cortico-cortical/cortico-subcortical pathways, cannot be reduced to nonspecific activation across motor structures. Instead, they reflect intensity-dependent, connection- and time-specific mechanisms.

          Related collections

          Most cited references 81

          • Record: found
          • Abstract: found
          • Article: not found

          A power primer.

           Jacob Cohen (1992)
          One possible reason for the continued neglect of statistical power analysis in research in the behavioral sciences is the inaccessibility of or difficulty with the standard material. A convenient, although not comprehensive, presentation of required sample sizes is provided here. Effect-size indexes and conventional values for these are given for operationally defined small, medium, and large effects. The sample sizes necessary for .80 power to detect effects at these levels are tabled for eight standard statistical tests: (a) the difference between independent means, (b) the significance of a product-moment correlation, (c) the difference between independent rs, (d) the sign test, (e) the difference between independent proportions, (f) chi-square tests for goodness of fit and contingency tables, (g) one-way analysis of variance, and (h) the significance of a multiple or multiple partial correlation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.

            An MRI time course of 512 echo-planar images (EPI) in resting human brain obtained every 250 ms reveals fluctuations in signal intensity in each pixel that have a physiologic origin. Regions of the sensorimotor cortex that were activated secondary to hand movement were identified using functional MRI methodology (FMRI). Time courses of low frequency (< 0.1 Hz) fluctuations in resting brain were observed to have a high degree of temporal correlation (P < 10(-3)) within these regions and also with time courses in several other regions that can be associated with motor function. It is concluded that correlation of low frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a manifestation of functional connectivity of the brain.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging.

              The majority of functional neuroscience studies have focused on the brain's response to a task or stimulus. However, the brain is very active even in the absence of explicit input or output. In this Article we review recent studies examining spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal of functional magnetic resonance imaging as a potentially important and revealing manifestation of spontaneous neuronal activity. Although several challenges remain, these studies have provided insight into the intrinsic functional architecture of the brain, variability in behaviour and potential physiological correlates of neurological and psychiatric disease.
                Bookmark

                Author and article information

                Contributors
                alessio.avenanti@unibo.it
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                2 November 2017
                2 November 2017
                2017
                : 7
                Affiliations
                [1 ]ISNI 0000 0001 0692 3437, GRID grid.417778.a, IRCCS Fondazione Santa Lucia, ; 00179 Rome, Italy
                [2 ]ISNI 0000 0004 1757 1758, GRID grid.6292.f, Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, ; 47521 Cesena, Italy
                [3 ]GRID grid.7841.a, Dipartimento di Psicologia, , Sapienza Università di Roma, ; 00185 Roma, Italy
                [4 ]ISNI 0000 0001 0942 6946, GRID grid.8356.8, Centre for Brain Science, Department of Psychology, , University of Essex, ; CO4 3SQ Colchester, UK
                Article
                13708
                10.1038/s41598-017-13708-2
                5668244
                29097700
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized

                Comments

                Comment on this article