1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Joint learning sample similarity and correlation representation for cancer survival prediction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          As a highly aggressive disease, cancer has been becoming the leading death cause around the world. Accurate prediction of the survival expectancy for cancer patients is significant, which can help clinicians make appropriate therapeutic schemes. With the high-throughput sequencing technology becoming more and more cost-effective, integrating multi-type genome-wide data has been a promising method in cancer survival prediction. Based on these genomic data, some data-integration methods for cancer survival prediction have been proposed. However, existing methods fail to simultaneously utilize feature information and structure information of multi-type genome-wide data.

          Results

          We propose a Multi-type Data Joint Learning (MDJL) approach based on multi-type genome-wide data, which comprehensively exploits feature information and structure information. Specifically, MDJL exploits correlation representations between any two data types by cross-correlation calculation for learning discriminant features. Moreover, based on the learned multiple correlation representations, MDJL constructs sample similarity matrices for capturing global and local structures across different data types. With the learned discriminant representation matrix and fused similarity matrix, MDJL constructs graph convolutional network with Cox loss for survival prediction.

          Conclusions

          Experimental results demonstrate that our approach substantially outperforms established integrative methods and is effective for cancer survival prediction.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: found

          The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.

          The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor. For the first time, the WHO classification of CNS tumors uses molecular parameters in addition to histology to define many tumor entities, thus formulating a concept for how CNS tumor diagnoses should be structured in the molecular era. As such, the 2016 CNS WHO presents major restructuring of the diffuse gliomas, medulloblastomas and other embryonal tumors, and incorporates new entities that are defined by both histology and molecular features, including glioblastoma, IDH-wildtype and glioblastoma, IDH-mutant; diffuse midline glioma, H3 K27M-mutant; RELA fusion-positive ependymoma; medulloblastoma, WNT-activated and medulloblastoma, SHH-activated; and embryonal tumour with multilayered rosettes, C19MC-altered. The 2016 edition has added newly recognized neoplasms, and has deleted some entities, variants and patterns that no longer have diagnostic and/or biological relevance. Other notable changes include the addition of brain invasion as a criterion for atypical meningioma and the introduction of a soft tissue-type grading system for the now combined entity of solitary fibrous tumor / hemangiopericytoma-a departure from the manner by which other CNS tumors are graded. Overall, it is hoped that the 2016 CNS WHO will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Global cancer statistics.

            The global burden of cancer continues to increase largely because of the aging and growth of the world population alongside an increasing adoption of cancer-causing behaviors, particularly smoking, in economically developing countries. Based on the GLOBOCAN 2008 estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in 2008; of these, 56% of the cases and 64% of the deaths occurred in the economically developing world. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% of the total cancer cases and 14% of the cancer deaths. Lung cancer is the leading cancer site in males, comprising 17% of the total new cancer cases and 23% of the total cancer deaths. Breast cancer is now also the leading cause of cancer death among females in economically developing countries, a shift from the previous decade during which the most common cause of cancer death was cervical cancer. Further, the mortality burden for lung cancer among females in developing countries is as high as the burden for cervical cancer, with each accounting for 11% of the total female cancer deaths. Although overall cancer incidence rates in the developing world are half those seen in the developed world in both sexes, the overall cancer mortality rates are generally similar. Cancer survival tends to be poorer in developing countries, most likely because of a combination of a late stage at diagnosis and limited access to timely and standard treatment. A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination (for liver and cervical cancers), and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake. Clinicians, public health professionals, and policy makers can play an active role in accelerating the application of such interventions globally.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Similarity network fusion for aggregating data types on a genomic scale.

              Recent technologies have made it cost-effective to collect diverse types of genome-wide data. Computational methods are needed to combine these data to create a comprehensive view of a given disease or a biological process. Similarity network fusion (SNF) solves this problem by constructing networks of samples (e.g., patients) for each available data type and then efficiently fusing these into one network that represents the full spectrum of underlying data. For example, to create a comprehensive view of a disease given a cohort of patients, SNF computes and fuses patient similarity networks obtained from each of their data types separately, taking advantage of the complementarity in the data. We used SNF to combine mRNA expression, DNA methylation and microRNA (miRNA) expression data for five cancer data sets. SNF substantially outperforms single data type analysis and established integrative approaches when identifying cancer subtypes and is effective for predicting survival.
                Bookmark

                Author and article information

                Contributors
                hyr2018@whu.edu.cn
                jingxy_2000@126.com
                sunqixing@whu.edu.cn
                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central (London )
                1471-2105
                19 December 2022
                19 December 2022
                2022
                : 23
                : 553
                Affiliations
                [1 ]GRID grid.49470.3e, ISNI 0000 0001 2331 6153, School of Computer Science, , Wuhan University, ; Wuhan, China
                [2 ]GRID grid.459577.d, ISNI 0000 0004 1757 6559, Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis and School of Computer, , Guangdong University of Petrochemical Technology, ; Maoming, China
                [3 ]GRID grid.41156.37, ISNI 0000 0001 2314 964X, State Key Laboratory for Novel Software Technology, , Nanjing University, ; Nanjing, China
                Article
                5110
                10.1186/s12859-022-05110-1
                9761951
                6005d7ef-abe8-4ca9-a5e4-22083d7a20c7
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 25 August 2022
                : 13 December 2022
                Funding
                Funded by: the NSFC-Key Project of General Technology Fundamental Research United Fund under Grant
                Award ID: No. U1736211
                Award Recipient :
                Funded by: the NSFC-Key Project under Grant
                Award ID: No. 61933013
                Award Recipient :
                Funded by: the Natural Science Foundation of Guangdong Province under Grant
                Award ID: No. 2019A1515011076
                Award Recipient :
                Funded by: the Innovation Group of Guangdong Education Department under Grant
                Award ID: No. 2020KCXTD014
                Award Recipient :
                Funded by: the 2019 Key Discipline project of Guangdong Province
                Funded by: the project of State Key Laboratory for Novel Software Technology under Grant
                Award ID: No. KFKT2021B29
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Bioinformatics & Computational biology
                cancer survival prediction,feature information,structure information,correlation representation,similarity matrix

                Comments

                Comment on this article