0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CuAAC “Click”-Derived Luminescent 2-(2-(4-(4-(Pyridin-2-yl)-1 H-1,2,3-triazol-1-yl)butoxy)phenyl)benzo[ d]thiazole-Based Ru(II)/Ir(III)/Re(I) Complexes as Anticancer Agents

      research-article
      ,
      ACS Omega
      American Chemical Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To enhance the cytoselective behavior of the complexes, we intended to develop a CuAAC “click”-derived synthetic protocol for the preparation of 2-(2-(4-(4-(pyridin-2-yl)-1 H-1,2,3-triazol-1-yl)butoxy)phenyl)benzo[ d]thiazole-based Ru(II)/Ir(III)/Re(I) complexes, and their cytotoxicity against three different cancer cell lines (MCF-7, HeLa, and U87MG) in consort with one normal cell line (HEK-293) was evaluated. In our detailed investigations, the significant cytotoxic nature of the Ru(II) complex 7a compared to Ir(III) and Re(I) complexes ( 7b and 7c, respectively) was observed. Complex 7a was capable of MCF-7 cell apoptosis via the inhibition of both S- and G2/M-phase cell cycle arrest in association with a substantial quantity of ROS production and DNA intercalation.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433

            Transition metal complexes are of increasing interest as photosensitizers in photodynamic therapy (PDT) and, more recently, for photochemotherapy (PCT). In recent years, Ru(II) polypyridyl complexes have emerged as promising systems for both PDT and PCT. Their rich photochemical and photophysical properties derive from a variety of excited-state electronic configurations accessible with visible and near-infrared light, and these properties can be exploited for both energy- and electron-transfer processes that can yield highly potent oxygen-dependent and/or oxygen-independent photobiological activity. Selected examples highlight the use of rational design in coordination chemistry to control the lowest-energy triplet excited-state configurations for eliciting a particular type of photoreactivity for PDT and/or PCT effects. These principles are also discussed in the context of the development of TLD1433, the first Ru(II)-based photosensitizer for PDT to enter a human clinical trial. The design of TLD1433 arose from a tumor-centered approach, as part of a complete PDT package that includes the light component and the protocol for treating non-muscle invasive bladder cancer. Briefly, this review summarizes the challenges to bringing PDT into mainstream cancer therapy. It considers the chemical and photophysical solutions that transition metal complexes offer, and it puts into context the multidisciplinary effort needed to bring a new drug to clinical trial.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

              Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                30 August 2023
                12 September 2023
                : 8
                : 36
                : 32382-32395
                Affiliations
                [1]Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology , Vellore 632014, Tamil Nadu, India
                Author notes
                Author information
                https://orcid.org/0000-0003-1698-4895
                Article
                10.1021/acsomega.3c01639
                10500652
                37720792
                6015a2bb-9fbc-4ba0-b5d4-b3cb11cf8229
                © 2023 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 10 March 2023
                : 13 July 2023
                Funding
                Funded by: Department of Science and Technology, Ministry of Science and Technology, India, doi 10.13039/501100001409;
                Award ID: NA
                Funded by: Science and Engineering Research Board, doi 10.13039/501100001843;
                Award ID: CRG/2021/002267
                Funded by: Indian Council of Medical Research, doi 10.13039/501100001411;
                Award ID: 2019-6766 Nan-BMS
                Categories
                Article
                Custom metadata
                ao3c01639
                ao3c01639

                Comments

                Comment on this article