30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Are PEEK-on-Ceramic Bearings an Option for Total Disc Arthroplasty? An In Vitro Tribology Study

      research-article
      , MS 1 , , , MS 1 , , MS 2 , , PhD 1
      Clinical Orthopaedics and Related Research
      Springer US

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Most contemporary total disc replacements (TDRs) use conventional orthopaedic bearing couples such as ultrahigh-molecular-weight polyethylene (polyethylene) and cobalt-chromium (CoCr). Cervical total disc replacements incorporating polyetheretherketone (PEEK) bearings (specifically PEEK-on-PEEK bearings) have been previously investigated, but little is known about PEEK-on-ceramic bearings for TDR.

          Questions/purposes

          (1) What is the tribologic behavior of a PEEK-on-ceramic bearing for cervical TDR under idealized, clean wear test conditions? (2) How does the PEEK-on-ceramic design perform under impingement conditions? (3) How is the PEEK-on-ceramic bearing affected by abrasive wear? (4) Is the particle morphology from PEEK-on-ceramic bearings for TDRs affected by adverse wear scenarios?

          Methods

          PEEK-on-ceramic cervical TDR bearings were subjected to a 10 million cycle ideal wear test based on ASTM F2423 and ISO 181912-1 using a six-station spine wear simulator (MTS, Eden Prairie, MN, USA) with 5 g/L bovine serum concentration at 23° ± 2° C (ambient temperature). Validated 1 million cycle impingement and 5 million cycle abrasive tests were conducted on the PEEK-on-ceramic bearings based, in part, on retrieval analysis of a comparable bearing design as well as finite element analyses. The ceramic-on-PEEK couple was characterized for damage modes, mass and volume loss, and penetration and the lubricant was subjected to particle analysis. The resulting mass wear rate, volumetric wear rate, based on material density, and particle analysis were compared with clinically available cervical disc bearing couples.

          Results

          The three modes of wear (idealized, impingement, and abrasive) resulted in mean mass wear rates of 0.9 ± 0.2 mg/MC, 1.9 ± 0.5 mg/MC, and 2.8 ± 0.6 mg/MC, respectively. The mass wear rates were converted to volumetric wear rates using density and found to be 0.7 ± 0.1 mm 3/MC, 1.5 ± 0.4 mm 3/MC, and 2.1 ± 0.5 mm 3/MC, respectively. During each test, the PEEK endplates were the primary sources of wear and demonstrated an abrasive wear mechanism. Under idealized and impingement conditions, the ceramic core also demonstrated slight polishing of the articulating surface but the change in mass was unmeasurable. During abrasive testing, the titanium transfer on the core was shown to polish over 5 MC of testing. In all cases and consistent with previous studies of other PEEK bearing couples, the particle size was primarily < 2 µm and morphology was smooth and spheroidal.

          Conclusions

          Overall, the idealized PEEK-on-ceramic wear rate (0.7 ± 0.1 mm 3/MC) appears comparable to the published wear rates for other polymer-on-hard bearing couples (0.3–6.7 mm 3/MC) and within the range of 0.2 to 1.9 mm 3/MC reported for PEEK-on-PEEK cervical disc designs. The particles, based on size and morphology, also suggest the wear mechanism is comparable between the PEEK-on-ceramic couple and other polymer-on-ceramic orthopaedic couples.

          Clinical Relevance

          The PEEK-on-ceramic bearing considered in this study is a novel bearing couple for use in total disc arthroplasty devices and will require clinical evaluation to fully assess the bearing couple and total disc design. However, the wear rates under idealized and adverse conditions, and particle size and morphology, suggest that PEEK-on-ceramic bearings may be a reasonable alternative to polyethylene-on-CoCr and metal-on-metal bearings currently used in cervical TDRs.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Zirconia as a ceramic biomaterial.

          Zirconia ceramics have several advantages over other ceramic materials, due to the transformation toughening mechanisms operating in their microstructure that can give to components made out of them, very interesting mechanical properties. The research on the use of zirconia ceramics as biomaterials started about twenty years ago, and now zirconia (Y-YZP) is in clinical use in THR, but developments are in progress for application in other medical devices. Recent developments have concentrated on the chemistry of precursors, in forming and sintering processes, and on surface finish of components. Today's main applications of zirconia ceramics is in THR ball heads. This review takes into account the main results achieved up to now, and is focused on the role that microstructural characteristics play on the TZP ceramics behaviour in ball heads, namely mechanical properties and their stability, wear of the UHMWPE paired to TZP, and their influence on biocompatibility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prospective, randomized, multicenter study of cervical arthroplasty: 269 patients from the Kineflex|C artificial disc investigational device exemption study with a minimum 2-year follow-up: clinical article.

            Cervical total disc replacement (CTDR) represents a relatively novel procedure intended to address some of the shortcomings associated with anterior cervical discectomy and fusion (ACDF) by preserving motion at the treated level. This prospective, randomized, multicenter study evaluates the safety and efficacy of a new metal-on-metal CTDR implant (Kineflex|C) by comparing it with ACDF in the treatment of single-level spondylosis with radiculopathy. The study was a prospective, randomized US FDA Investigational Device Exemption (IDE) pivotal trial conducted at 21 centers across the US. The primary clinical outcome measures included the Neck Disability Index (NDI), visual analog scale (VAS) scores, and a composite measure of clinical success. Patients were randomized to CTDR using the Kineflex|C (SpinalMotion, Inc.) cervical artificial disc or ACDF using structural allograft and an anterior plate. A total of 269 patients were enrolled and randomly assigned to either CTDR (136 patients) or to ACDF (133 patients). There were no significant differences between the CTDR and ACDF groups when comparing operative time, blood loss, length of hospital stay, or the reoperation rate at the index level. The overall success rate was significantly greater in the CTDR group (85%) compared with the ACDF group (71%) (p = 0.05). In both groups, the mean NDI scores improved significantly by 6 weeks after surgery and remained significantly improved throughout the 24-month follow-up (p < 0.0001). Similarly, the VAS pain scores improved significantly by 6 weeks and remained significantly improved through the 24-month follow-up (p < 0.0001). The range of motion (ROM) in the CTDR group decreased at 3 months but was significantly greater than the preoperative mean at 12- and 24-month follow-up. The ROM in the ACDF group was significantly reduced by 3 months and remained so throughout the follow-up. Adjacent-level degeneration was also evaluated in both groups from preoperatively to 2-year follow-up and was classified as none, mild, moderate, or severe. Preoperatively, there were no significant differences between groups when evaluating the different levels of adjacent-level degeneration. At the 2-year follow-up, there were significantly more patients in the ACDF group with severe adjacent-level radiographic changes (p < 0.0001). However, there were no significant differences between groups in adjacent-level reoperation rate (7.6% for the Kineflex|C group and 6.1% for the ACDF group). Cervical total disc replacement allows for neural decompression and clinical results comparable to ACDF. Kineflex|C was associated with a significantly greater overall success rate than fusion while maintaining motion at the index level. Furthermore, there were significantly fewer Kineflex|C patients showing severe adjacent-level radiographic changes at the 2-year follow-up. These results from a prospective, randomized study support that Kineflex|C CTDR is a viable alternative to ACDF in select patients with cervical radiculopathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The current state of bearing surfaces in total hip replacement.

              We reviewed the literature on the currently available choices of bearing surface in total hip replacement (THR). We present a detailed description of the properties of articulating surfaces review the understanding of the advantages and disadvantages of existing bearing couples. Recent technological developments in the field of polyethylene and ceramics have altered the risk of fracture and the rate of wear, although the use of metal-on-metal bearings has largely fallen out of favour, owing to concerns about reactions to metal debris. As expected, all bearing surface combinations have advantages and disadvantages. A patient-based approach is recommended, balancing the risks of different options against an individual's functional demands.
                Bookmark

                Author and article information

                Contributors
                rsiskey@exponent.com
                Journal
                Clin Orthop Relat Res
                Clin. Orthop. Relat. Res
                Clinical Orthopaedics and Related Research
                Springer US (New York )
                0009-921X
                1528-1132
                27 September 2016
                27 September 2016
                November 2016
                : 474
                : 11
                : 2428-2440
                Affiliations
                [1 ]Exponent, Inc, 3440 Market Street, Suite 600, Philadelphia, PA 19104 USA
                [2 ]Simplify Medical, Sunnyvale, CA USA
                Article
                5041
                10.1007/s11999-016-5041-7
                5052213
                27677290
                6066c3b1-331d-49f3-b19e-832362fb757d
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                Categories
                Symposium: Advances in PEEK Technology
                Custom metadata
                © The Association of Bone and Joint Surgeons® 2016

                Orthopedics
                Orthopedics

                Comments

                Comment on this article