5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Facioscapulohumeral muscular dystrophy: genetics, gene activation and downstream signalling with regard to recent therapeutic approaches: an update

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Whilst a disease-modifying treatment for Facioscapulohumeral muscular dystrophy (FSHD) does not exist currently, recent advances in complex molecular pathophysiology studies of FSHD have led to possible therapeutic approaches for its targeted treatment. Although the underlying genetics of FSHD have been researched extensively, there remains an incomplete understanding of the pathophysiology of FSHD in relation to the molecules leading to DUX4 gene activation and the downstream gene targets of DUX4 that cause its toxic effects. In the context of the local proximity of chromosome 4q to the nuclear envelope, a contraction of the D4Z4 macrosatellite induces lower methylation levels, enabling the ectopic expression of DUX4. This disrupts numerous signalling pathways that mostly result in cell death, detrimentally affecting skeletal muscle in affected individuals. In this regard different options are currently explored either to suppress the transcription of DUX4 gene, inhibiting DUX4 protein from its toxic effects, or to alleviate the symptoms triggered by its numerous targets.

          Related collections

          Most cited references226

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNAs: target recognition and regulatory functions.

          MicroRNAs (miRNAs) are endogenous approximately 23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IL-6 in inflammation, immunity, and disease.

            Interleukin 6 (IL-6), promptly and transiently produced in response to infections and tissue injuries, contributes to host defense through the stimulation of acute phase responses, hematopoiesis, and immune reactions. Although its expression is strictly controlled by transcriptional and posttranscriptional mechanisms, dysregulated continual synthesis of IL-6 plays a pathological effect on chronic inflammation and autoimmunity. For this reason, tocilizumab, a humanized anti-IL-6 receptor antibody was developed. Various clinical trials have since shown the exceptional efficacy of tocilizumab, which resulted in its approval for the treatment of rheumatoid arthritis and juvenile idiopathic arthritis. Moreover, tocilizumab is expected to be effective for other intractable immune-mediated diseases. In this context, the mechanism for the continual synthesis of IL-6 needs to be elucidated to facilitate the development of more specific therapeutic approaches and analysis of the pathogenesis of specific diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of microRNA biogenesis.

              Minju Ha, V Kim (2014)
              MicroRNAs (miRNAs) are small non-coding RNAs that function as guide molecules in RNA silencing. Targeting most protein-coding transcripts, miRNAs are involved in nearly all developmental and pathological processes in animals. The biogenesis of miRNAs is under tight temporal and spatial control, and their dysregulation is associated with many human diseases, particularly cancer. In animals, miRNAs are ∼22 nucleotides in length, and they are produced by two RNase III proteins--Drosha and Dicer. miRNA biogenesis is regulated at multiple levels, including at the level of miRNA transcription; its processing by Drosha and Dicer in the nucleus and cytoplasm, respectively; its modification by RNA editing, RNA methylation, uridylation and adenylation; Argonaute loading; and RNA decay. Non-canonical pathways for miRNA biogenesis, including those that are independent of Drosha or Dicer, are also emerging.
                Bookmark

                Author and article information

                Contributors
                hans-peter.deigner@hs-furtwangen.de
                Journal
                Orphanet J Rare Dis
                Orphanet J Rare Dis
                Orphanet Journal of Rare Diseases
                BioMed Central (London )
                1750-1172
                12 March 2021
                12 March 2021
                2021
                : 16
                : 129
                Affiliations
                [1 ]GRID grid.21051.37, ISNI 0000 0001 0601 6589, Institute of Precision Medicine, Medical and Life Sciences Faculty, , Furtwangen University, ; Jakob-Kienzle-Straße 17, 78054 Villingen-Schwenningen, Germany
                [2 ]GRID grid.5963.9, Institute of Pharmaceutical Sciences, , University of Freiburg, ; Albertstraße 25, 79104 Freiburg i. Br., Germany
                [3 ]GRID grid.418008.5, ISNI 0000 0004 0494 3022, EXIM Department, , Fraunhofer Institute IZI, Leipzig, ; Schillingallee 68, 18057 Rostock, Germany
                [4 ]GRID grid.10392.39, ISNI 0000 0001 2190 1447, Faculty of Science, , Tuebingen University, ; Auf der Morgenstelle 8, 72076 Tübingen, Germany
                Author information
                http://orcid.org/0000-0002-7745-0152
                Article
                1760
                10.1186/s13023-021-01760-1
                7953708
                33712050
                6066e0be-c2ae-4261-b045-c76c1dcc8ce6
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 13 October 2020
                : 25 February 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003542, Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg;
                Award ID: scholarship
                Award Recipient :
                Funded by: Hochschule Furtwangen (3324)
                Categories
                Review
                Custom metadata
                © The Author(s) 2021

                Infectious disease & Microbiology
                facioscapulohumeral muscular dystrophy (fshd),double homeobox 4 (dux4),epigenetic,downstream signalling,treatment strategies

                Comments

                Comment on this article