20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Release of transcriptional repression through the HCR promoter region confers uniform expression of HWP1 on surfaces of Candida albicans germ tubes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mechanisms that fungi use to co-regulate subsets of genes specifically associated with morphogenic states represent a basic unsolved problem in fungal biology. Candida albicans is an important model of fungal differentiation both for rapid interconversion between yeast and hyphal growth forms and for white/opaque switching mechanisms. The Sundstrom lab is interested in mechanisms regulating hypha-specific expression of adhesin genes that are critical for C. albicans hyphal growth phenotypes and pathogenicity. Early studies on hypha-specific genes such as HWP1 and ALS3 reported 5’ intergenic regions that are larger than those typically found in an average promoter and are associated with hypha-specific expression. In the case of HWP1, activation and repression involves a 368 bp region, denoted the HWP1 control region (HCR), located 1410 bp upstream of its transcription start site. In previous work we showed that HCR confers developmental regulation to a heterologous ENO1 promoter, indicating that HCR by itself contains sufficient information to couple gene expression to morphology. Here we show that the activation and repression mediated by HCR are localized to distinct HCR regions that are targeted by the transcription factors Nrg1p and Efg1p. The finding that Efg1p mediates both repression via HCR under yeast morphological conditions and activation conditions positions Efg1p as playing a central role in coupling HWP1 expression to morphogenesis through the HCR region. These localization studies revealed that the 120 terminal base pairs of HCR confer Efg1p-dependent repressive activity in addition to the Nrg1p repressive activity mediated by DNA upstream of this subregion. The 120 terminal base pair subregion of HCR also contained an initiation site for an HWP1 transcript that is specific to yeast growth conditions (HCR-Y) and may function in the repression of downstream DNA. The detection of an HWP1 mRNA isoform specific to hyphal growth conditions (HWP1-H) showed that morphology-specific mRNA isoforms occur under both yeast and hyphal growth conditions. Similar results were found at the ALS3 locus. Taken together, these results, suggest that the long 5’ intergenic regions upstream of hypha-specific genes function in generating mRNA isoforms that are important for morphology-specific gene expression. Additional complexity in the HWP1 promoter involving HCR-independent activation was discovered by creating a strain lacking HCR that exhibited variable HWP1 expression during hyphal growth conditions. These results show that while HCR is important for ensuring uniform HWP1 expression in cell populations, HCR independent expression also exists. Overall, these results elucidate HCR-dependent mechanisms for coupling HWP1-dependent gene expression to morphology uniformly in cell populations and prompt the hypothesis that mRNA isoforms may play a role in coupling gene expression to morphology in C. albicans.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Nonfilamentous C. albicans mutants are avirulent.

          Candida albicans and Saccharomyces cerevisiae switch from a yeast to a filamentous form. In Saccharomyces, this switch is controlled by two regulatory proteins, Ste12p and Phd1p. Single-mutant strains, ste12/ste12 or phd1/phd1, are partially defective, whereas the ste12/ste12 phd1/phd1 double mutant is completely defective in filamentous growth and is noninvasive. The equivalent cph1/cph1 efg1/efg1 double mutant in Candida (Cph1p is the Ste12p homolog and Efg1p is the Phd1p homolog) is also defective in filamentous growth, unable to form hyphae or pseudohyphae in response to many stimuli, including serum or macrophages. This Candida cph1/cph1 efg1/efg1 double mutant, locked in the yeast form, is avirulent in a mouse model.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1.

            The pathogenesis of candidiasis involves invasion of host tissues by filamentous forms of the opportunistic yeast Candida albicans. Morphology-specific gene products may confer proinvasive properties. A hypha-specific surface protein, Hwp1, with similarities to mammalian small proline-rich proteins was shown to serve as a substrate for mammalian transglutaminases. Candida albicans strains lacking Hwp1 were unable to form stable attachments to human buccal epithelial cells and had a reduced capacity to cause systemic candidiasis in mice. This represents a paradigm for microbial adhesion that implicates essential host enzymes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing.

              The incidence of fungal infections has increased significantly over the past decades. Very often these infections are associated with biofilm formation on implanted biomaterials and/or host surfaces. This has important clinical implications, as fungal biofilms display properties that are dramatically different from planktonic (free-living) populations, including increased resistance to antifungal agents. Here we describe a rapid and highly reproducible 96-well microtiter-based method for the formation of fungal biofilms, which is easily adaptable for antifungal susceptibility testing. This model is based on the ability of metabolically active sessile cells to reduce a tetrazolium salt (2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide) to water-soluble orange formazan compounds, the intensity of which can then be determined using a microtiter-plate reader. The entire procedure takes approximately 2 d to complete. This technique simplifies biofilm formation and quantification, making it more reliable and comparable among different laboratories, a necessary step toward the standardization of antifungal susceptibility testing of biofilms.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: InvestigationRole: MethodologyRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: InvestigationRole: MethodologyRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: Investigation
                Role: Investigation
                Role: Investigation
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: MethodologyRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                13 February 2018
                2018
                : 13
                : 2
                : e0192260
                Affiliations
                [1 ] Department of Microbiology and Immunology, Microbiology and Molecular Pathogenesis Program, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
                [2 ] Department of Biology, Hampden-Sydney College, Hampden-Sydney, Virginia, United States of America
                King's College London Dental Institute, UNITED KINGDOM
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                [¤a]

                Current address: Yongsan International School of Seoul, Seoul, Republic of Korea

                [¤b]

                Current address: Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Socialist Republic of Vietnam

                [¤c]

                Current address: Department of Surgery, Mt. Sinai Hospital/Icahn School of Medicine, New York City, New York, United States of America

                Author information
                http://orcid.org/0000-0002-9490-0370
                Article
                PONE-D-17-39519
                10.1371/journal.pone.0192260
                5810986
                29438403
                60d77991-d961-4824-85ba-790b4a1178b9
                © 2018 Kim et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 November 2017
                : 19 January 2018
                Page count
                Figures: 8, Tables: 1, Pages: 24
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: R01 AI46608
                Award Recipient :
                Support for this research was provided to Paula Sundstrom by the National Institute of Allergy and Infectious Diseases (R01 AI46608) https://www.niaid.nih.gov/ and by internal, institutional reserves. There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Eukaryota
                Fungi
                Yeast
                Candida
                Candida Albicans
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Fungal Pathogens
                Candida Albicans
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Fungal Pathogens
                Candida Albicans
                Biology and Life Sciences
                Mycology
                Fungal Pathogens
                Candida Albicans
                Research and Analysis Methods
                Experimental Organism Systems
                Yeast and Fungal Models
                Candida Albicans
                Biology and Life Sciences
                Organisms
                Eukaryota
                Fungi
                Yeast
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Research and Analysis Methods
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Messenger RNA
                Biology and life sciences
                Genetics
                Gene expression
                DNA transcription
                Biology and Life Sciences
                Genetics
                Gene Expression
                Gene Regulation
                Biology and Life Sciences
                Genetics
                Genetic Loci
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article