18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasmodium vivax Sporozoite Challenge in Malaria-Naïve and Semi-Immune Colombian Volunteers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Significant progress has been recently achieved in the development of Plasmodium vivax challenge infections in humans, which are essential for vaccine and drug testing. With the goal of accelerating clinical development of malaria vaccines, the outcome of infections experimentally induced in naïve and semi-immune volunteers by infected mosquito bites was compared.

          Methods

          Seven malaria-naïve and nine semi-immune Colombian adults (n = 16) were subjected to the bites of 2–4 P. vivax sporozoite-infected Anopheles mosquitoes. Parasitemia levels, malaria clinical manifestations, and immune responses were assessed and compared.

          Results

          All volunteers developed infections as confirmed by microscopy and RT-qPCR. No significant difference in the pre-patent period (mean 12.5 and 12.8 days for malaria-naïve and malaria-exposed, respectively) was observed but naïve volunteers developed classical malaria signs and symptoms, while semi-immune volunteers displayed minor or no symptoms at the day of diagnosis. A malaria-naïve volunteer developed a transient low submicroscopic parasitemia that cured spontaneously. Infection induced an increase in specific antibody levels in both groups.

          Conclusion

          Sporozoite infectious challenge was safe and reproducible in semi-immune and naïve volunteers. This model will provide information for simultaneous comparison of the protective efficacy of P. vivax vaccines in naïve and semi-immune volunteers under controlled conditions and would accelerate P. vivax vaccine development.

          Trial Registration

          clinicaltrials.gov NCT01585077

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays.

          There have been reports of increasing numbers of cases of malaria among migrants and travelers. Although microscopic examination of blood smears remains the "gold standard" in diagnosis, this method suffers from insufficient sensitivity and requires considerable expertise. To improve diagnosis, a multiplex real-time PCR was developed. One set of generic primers targeting a highly conserved region of the 18S rRNA gene of the genus Plasmodium was designed; the primer set was polymorphic enough internally to design four species-specific probes for P. falciparum, P. vivax, P. malarie, and P. ovale. Real-time PCR with species-specific probes detected one plasmid copy of P. falciparum, P. vivax, P. malariae, and P. ovale specifically. The same sensitivity was achieved for all species with real-time PCR with the 18S screening probe. Ninety-seven blood samples were investigated. For 66 of them (60 patients), microscopy and real-time PCR results were compared and had a crude agreement of 86% for the detection of plasmodia. Discordant results were reevaluated with clinical, molecular, and sequencing data to resolve them. All nine discordances between 18S screening PCR and microscopy were resolved in favor of the molecular method, as were eight of nine discordances at the species level for the species-specific PCR among the 31 samples positive by both methods. The other 31 blood samples were tested to monitor the antimalaria treatment in seven patients. The number of parasites measured by real-time PCR fell rapidly for six out of seven patients in parallel to parasitemia determined microscopically. This suggests a role of quantitative PCR for the monitoring of patients receiving antimalaria therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phase 1 Trial of Malaria Transmission Blocking Vaccine Candidates Pfs25 and Pvs25 Formulated with Montanide ISA 51

            Background Pfs25 and Pvs25, surface proteins of mosquito stage of the malaria parasites P. falciparum and P. vivax, respectively, are leading candidates for vaccines preventing malaria transmission by mosquitoes. This single blinded, dose escalating, controlled Phase 1 study assessed the safety and immunogenicity of recombinant Pfs25 and Pvs25 formulated with Montanide ISA 51, a water-in-oil emulsion. Methodology/Principal Findings The trial was conducted at The Johns Hopkins Center for Immunization Research, Washington DC, USA, between May 16, 2005–April 30, 2007. The trial was designed to enroll 72 healthy male and non-pregnant female volunteers into 1 group to receive adjuvant control and 6 groups to receive escalating doses of the vaccines. Due to unexpected reactogenicity, the vaccination was halted and only 36 volunteers were enrolled into 4 groups: 3 groups of 10 volunteers each were immunized with 5 µg of Pfs25/ISA 51, 5 µg of Pvs25/ISA 51, or 20 µg of Pvs25/ISA 51, respectively. A fourth group of 6 volunteers received adjuvant control (PBS/ISA 51). Frequent local reactogenicity was observed. Systemic adverse events included two cases of erythema nodosum considered to be probably related to the combination of the antigen and the adjuvant. Significant antibody responses were detected in volunteers who completed the lowest scheduled doses of Pfs25/ISA 51. Serum anti-Pfs25 levels correlated with transmission blocking activity. Conclusion/Significance It is feasible to induce transmission blocking immunity in humans using the Pfs25/ISA 51 vaccine, but these vaccines are unexpectedly reactogenic for further development. This is the first report that the formulation is associated with systemic adverse events including erythema nodosum. Trial Registration ClinicalTrials.gov NCT00295581
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contrasting genetic structure in Plasmodium vivax populations from Asia and South America.

              Populations of Plasmodium falciparum show striking differences in linkage disequilibrium, population differentiation and diversity, but only fragmentary data exists on the genetic structure of Plasmodium vivax. We genotyped nine tandem repeat loci bearing 2-8 bp motifs from 345 P. vivax infections collected from three Asian countries and from five locations in Colombia. We observed 9-37 alleles per locus and high diversity (He=0.72-0.79, mean=0.75) in all countries. Numbers of multiple clone infections varied considerably: these were rare in Colombia and India, but > 60% of isolates carried multiple alleles in at least one locus in Thailand and Laos. However, only one or two of the nine loci show >1 allele in many samples, suggesting that mutation within infections may result in overestimation of true multiple carriage rates. Identical nine-locus genotypes were frequently found in Colombian populations, contributing to strong linkage disequilibrium. These identical genotypes were strongly clustered in time, consistent with epidemic transmission of clones and subsequent breakdown of allelic associations, suggesting high rates of inbreeding and low effective recombination rates in this country. In contrast, identical genotypes were rare and loci were randomly associated in all three Asian populations, consistent with higher rates of outcrossing and recombination. We observed low but significant differentiation between different Asian countries (standardized FST = 0.13-0.45). In comparison, we see greater differentiation between collection locations within Colombia (standardized FST = 0.4-0.7), and strong differentiation between continents (standardized FST = 0.48-0.79). The observed heterogeneity in multiple clone carriage rates, linkage disequilibrium and population differentiation are similar in some, but not all, respects to those observed in P. falciparum, and have important implications for the design of association mapping studies, and interpretation of P. vivax epidemiology.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                25 June 2014
                : 9
                : 6
                : e99754
                Affiliations
                [1 ]Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
                [2 ]School of Health, Universidad del Valle, Cali, Colombia
                [3 ]Caucaseco Scientific Research Center (CSRC), Cali, Colombia
                [4 ]Meridional R&D, São Paulo, Brazil
                [5 ]Centro Médico Imbanaco, Cali, Colombia
                University of California Los Angeles, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MAH SH RP. Performed the experiments: DAFP KR JGH NLM MLP AC NC. Analyzed the data: MAH SH DAFP NLM MLP. Contributed reagents/materials/analysis tools: DAFP KR JGH NLM MLP AC NC. Wrote the paper: MAH SH. Supervised data quality assurance: RP. Supported clinical assessment of volunteers: JMO. Infectious disease specialist advisor: JMO.

                Article
                PONE-D-13-55082
                10.1371/journal.pone.0099754
                4070897
                24963662
                610cd3fb-ff6c-4fb0-834e-38eb4f2f7043
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 December 2013
                : 15 May 2014
                Page count
                Pages: 12
                Funding
                This study was supported by: 1) National Heart, Lung and Blood Institute (NHLBI, grant #5R01HL086488) http://www.nhlbi.nih.gov/. 2) Colombian National Research Council, COLCIENCIAS (contract No. 527-2009,529-2009, 360-2012 and 458-2012) http://www.colciencias.gov.co/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Immunology
                Vaccination and Immunization
                Vaccine Development
                Vaccines
                Clinical Immunology
                Immune Response
                Immunity
                Organisms
                Protozoans
                Parasitic Protozoans
                Malarial Parasites
                Plasmodium Vivax
                Medicine and Health Sciences
                Infectious Diseases
                Parasitic Diseases
                Malaria
                Tropical Diseases

                Uncategorized
                Uncategorized

                Comments

                Comment on this article