17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fish as models for environmental genomics

      ,
      Nature Reviews Genetics
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fish offer important advantages for defining the organism-environment interface and responses to natural or anthropogenic stressors. Genomic approaches using fish promise increased investigative power, and have already provided insights into the mechanisms that underlie short-term and long-term environmental adaptations. The range of fish species for which genomic resources are available is increasing, but will require significant further expansion for the optimal application of fish environmental genomics.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          The KEGG resource for deciphering the genome.

          A grand challenge in the post-genomic era is a complete computer representation of the cell and the organism, which will enable computational prediction of higher-level complexity of cellular processes and organism behavior from genomic information. Toward this end we have been developing a knowledge-based approach for network prediction, which is to predict, given a complete set of genes in the genome, the protein interaction networks that are responsible for various cellular processes. KEGG at http://www.genome.ad.jp/kegg/ is the reference knowledge base that integrates current knowledge on molecular interaction networks such as pathways and complexes (PATHWAY database), information about genes and proteins generated by genome projects (GENES/SSDB/KO databases) and information about biochemical compounds and reactions (COMPOUND/GLYCAN/REACTION databases). These three types of database actually represent three graph objects, called the protein network, the gene universe and the chemical universe. New efforts are being made to abstract knowledge, both computationally and manually, about ortholog clusters in the KO (KEGG Orthology) database, and to collect and analyze carbohydrate structures in the GLYCAN database.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes

            We explored genomic expression patterns in the yeast Saccharomyces cerevisiae responding to diverse environmental transitions. DNA microarrays were used to measure changes in transcript levels over time for almost every yeast gene, as cells responded to temperature shocks, hydrogen peroxide, the superoxide-generating drug menadione, the sulfhydryl-oxidizing agent diamide, the disulfide-reducing agent dithiothreitol, hyper- and hypo-osmotic shock, amino acid starvation, nitrogen source depletion, and progression into stationary phase. A large set of genes (approximately 900) showed a similar drastic response to almost all of these environmental changes. Additional features of the genomic responses were specialized for specific conditions. Promoter analysis and subsequent characterization of the responses of mutant strains implicated the transcription factors Yap1p, as well as Msn2p and Msn4p, in mediating specific features of the transcriptional response, while the identification of novel sequence elements provided clues to novel regulators. Physiological themes in the genomic responses to specific environmental stresses provided insights into the effects of those stresses on the cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks.

              Hindlimb loss has evolved repeatedly in many different animals by means of molecular mechanisms that are still unknown. To determine the number and type of genetic changes underlying pelvic reduction in natural populations, we carried out genetic crosses between threespine stickleback fish with complete or missing pelvic structures. Genome-wide linkage mapping shows that pelvic reduction is controlled by one major and four minor chromosome regions. Pitx1 maps to the major chromosome region controlling most of the variation in pelvic size. Pelvic-reduced fish show the same left-right asymmetry seen in Pitx1 knockout mice, but do not show changes in Pitx1 protein sequence. Instead, pelvic-reduced sticklebacks show site-specific regulatory changes in Pitx1 expression, with reduced or absent expression in pelvic and caudal fin precursors. Regulatory mutations in major developmental control genes may provide a mechanism for generating rapid skeletal changes in natural populations, while preserving the essential roles of these genes in other processes.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Genetics
                Nat Rev Genet
                Springer Science and Business Media LLC
                1471-0056
                1471-0064
                April 2005
                April 2005
                : 6
                : 4
                : 324-333
                Article
                10.1038/nrg1590
                15803200
                6147be1d-6778-40bd-9748-954e24b2223f
                © 2005

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article