24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Industrialised fishing nations largely contribute to floating plastic pollution in the North Pacific subtropical gyre

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The subtropical oceanic gyre in the North Pacific Ocean is currently covered with tens of thousands of tonnes of floating plastic debris, dispersed over millions of square kilometres. A large fraction is composed of fishing nets and ropes while the rest is mostly composed of hard plastic objects and fragments, sometimes carrying evidence on their origin. In 2019, an oceanographic mission conducted in the area, retrieved over 6000 hard plastic debris items > 5 cm. The debris was later sorted, counted, weighed, and analysed for evidence of origin and age. Our results, complemented with numerical model simulations and findings from a previous oceanographic mission, revealed that a majority of the floating material stems from fishing activities. While recent assessments for plastic inputs into the ocean point to coastal developing economies and rivers as major contributors into oceanic plastic pollution, here we show that most floating plastics in the North Pacific subtropical gyre can be traced back to five industrialised fishing nations, highlighting the important role the fishing industry plays in the solution to this global issue.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Production, use, and fate of all plastics ever made

          We present the first ever global account of the production, use, and end-of-life fate of all plastics ever made by humankind.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Marine pollution. Plastic waste inputs from land into the ocean.

            Plastic debris in the marine environment is widely documented, but the quantity of plastic entering the ocean from waste generated on land is unknown. By linking worldwide data on solid waste, population density, and economic status, we estimated the mass of land-based plastic waste entering the ocean. We calculate that 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.8 to 12.7 million MT entering the ocean. Population size and the quality of waste management systems largely determine which countries contribute the greatest mass of uncaptured waste available to become plastic marine debris. Without waste management infrastructure improvements, the cumulative quantity of plastic waste available to enter the ocean from land is predicted to increase by an order of magnitude by 2025.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              River plastic emissions to the world's oceans

              Plastics in the marine environment have become a major concern because of their persistence at sea, and adverse consequences to marine life and potentially human health. Implementing mitigation strategies requires an understanding and quantification of marine plastic sources, taking spatial and temporal variability into account. Here we present a global model of plastic inputs from rivers into oceans based on waste management, population density and hydrological information. Our model is calibrated against measurements available in the literature. We estimate that between 1.15 and 2.41 million tonnes of plastic waste currently enters the ocean every year from rivers, with over 74% of emissions occurring between May and October. The top 20 polluting rivers, mostly located in Asia, account for 67% of the global total. The findings of this study provide baseline data for ocean plastic mass balance exercises, and assist in prioritizing future plastic debris monitoring and mitigation strategies.
                Bookmark

                Author and article information

                Contributors
                laurent.lebreton@theoceancleanup.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                1 September 2022
                1 September 2022
                2022
                : 12
                : 12666
                Affiliations
                [1 ]GRID grid.511420.3, ISNI 0000 0004 5931 3415, The Ocean Cleanup, ; Rotterdam, The Netherlands
                [2 ]The Modelling House, Raglan, New Zealand
                [3 ]GRID grid.4818.5, ISNI 0000 0001 0791 5666, Wageningen University & Research, ; Wageningen, The Netherlands
                [4 ]Egger Research and Consulting, St Gallen, Switzerland
                Article
                16529
                10.1038/s41598-022-16529-0
                9436981
                36050351
                996064ec-9412-4ff1-aaac-75a919ac4d00
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 13 January 2022
                : 12 July 2022
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                environmental sciences,ocean sciences
                Uncategorized
                environmental sciences, ocean sciences

                Comments

                Comment on this article