10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      lentiMPRA and MPRAflow for high-throughput functional characterization of gene regulatory elements

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Massively parallel reporter assays (MPRAs) can simultaneously measure the function of thousands of candidate regulatory sequences (CRSs) in a quantitative manner. In this method, CRSs are cloned upstream of a minimal promoter and reporter gene, alongside a unique barcode, and introduced into cells. If the CRS is a functional regulatory element, it will lead to the transcription of the barcode sequence, which is measured via RNA sequencing and normalized for cellular integration via DNA sequencing of the barcode. This technology has been used to test thousands of sequences and their variants for regulatory activity, to decipher the regulatory code and its evolution, and to develop genetic switches. Lentivirus-based MPRA (lentiMPRA) produces ‘in-genome’ readouts and enables the use of this technique in hard-to-transfect cells. Here, we provide a detailed protocol for lentiMPRA, along with a user-friendly Nextflow-based computational pipeline—MPRAflow—for quantifying CRS activity from different MPRA designs. The lentiMPRA protocol takes ~2 months, which includes sequencing turnaround time and data processing with MPRAflow.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Regulatory Elements, Major Drivers of Human Disease.

          Gene expression changes, the driving forces for cellular diversity in multicellular organisms, are regulated by a diverse set of gene regulatory elements that direct transcription in specific cells. Mutations in these elements, ranging from chromosomal aberrations to single-nucleotide polymorphisms, are a major cause of human disease. However, we currently have a very limited understanding of how regulatory element genotypes lead to specific phenotypes. In this review, we discuss the various methods of regulatory element identification, the different types of mutations they harbor, and their impact on human disease. We highlight how these variations can affect transcription of multiple genes in gene regulatory networks. In addition, we describe how novel technologies, such as massively parallel reporter assays and CRISPR/Cas9 genome editing, are beginning to provide a better understanding of the functional roles that these elements have and how their alteration can lead to specific phenotypes. Expected final online publication date for the Annual Review of Genomics and Human Genetics Volume 18 is August 31, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites.

            Analysis of the human genome sequence has identified approximately 25000-30000 protein-coding genes, but little is known about how most of these are regulated. Mapping DNase I hypersensitive (HS) sites has traditionally represented the gold-standard experimental method for identifying regulatory elements, but the labor-intensive nature of this technique has limited its application to only a small number of human genes. We have developed a protocol to generate a genome-wide library of gene regulatory sequences by cloning DNase HS sites. We generated a library of DNase HS sites from quiescent primary human CD4(+) T cells and analyzed approximately 5600 of the resulting clones. Compared to sequences from randomly generated in silico libraries, sequences from these clones were found to map more frequently to regions of the genome known to contain regulatory elements, such as regions upstream of genes, within CpG islands, and in sequences that align between mouse and human. These cloned sites also tend to map near genes that have detectable transcripts in CD4(+) T cells, demonstrating that transcriptionally active regions of the genome are being selected. Validation of putative regulatory elements was achieved by repeated recovery of the same sequence and real-time PCR. This cloning strategy, which can be scaled up and applied to any cell line or tissue, will be useful in identifying regulatory elements controlling global expression differences that delineate tissue types, stages of development, and disease susceptibility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification and Massively Parallel Characterization of Regulatory Elements Driving Neural Induction

              Epigenomic regulation and lineage-specific gene expression act in concert to drive cellular differentiation, but the temporal interplay between these processes is largely unknown. Using neural induction from human pluripotent stem cells (hPSCs) as a paradigm, we interrogated these dynamics by performing RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and assay for transposase accessible chromatin using sequencing (ATAC-seq) at seven time points during early neural differentiation. We found that changes in DNA accessibility precede H3K27ac, which is followed by gene expression changes. Using massively parallel reporter assays (MPRAs) to test the activity of 2,464 candidate regulatory sequences at all seven time points, we show that many of these sequences have temporal activity patterns that correlate with their respective cell-endogenous gene expression and chromatin changes. A prioritization method incorporating all genomic and MPRA data further identified key transcription factors involved in driving neural fate. These results provide a comprehensive resource of genes and regulatory elements that orchestrate neural induction and illuminate temporal frameworks during differentiation. To reveal regulatory dynamics during neural induction, we performed RNA-seq, ChIP-seq, ATAC-seq, and lentiMPRA at seven time points during early neural differentiation. We incorporated all information and identified TFs that play important roles in this process. We demonstrated overexpression or CRISPRi of five TFs affected ESC-NPC differentiation.
                Bookmark

                Author and article information

                Journal
                Nature Protocols
                Nat Protoc
                Springer Science and Business Media LLC
                1754-2189
                1750-2799
                July 8 2020
                Article
                10.1038/s41596-020-0333-5
                7550205
                32641802
                6293c41e-9330-4141-ad53-12f434bcb744
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article