1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drug-drug interactions prediction based on deep learning and knowledge graph: A review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Drug-drug interactions (DDIs) can produce unpredictable pharmacological effects and lead to adverse events that have the potential to cause irreversible damage to the organism. Traditional methods to detect DDIs through biological or pharmacological analysis are time-consuming and expensive, therefore, there is an urgent need to develop computational methods to effectively predict drug-drug interactions. Currently, deep learning and knowledge graph techniques which can effectively extract features of entities have been widely utilized to develop DDI prediction methods. In this research, we aim to systematically review DDI prediction researches applying deep learning and graph knowledge. The available biomedical data and public databases related to drugs are firstly summarized in this review. Then, we discuss the existing drug-drug interactions prediction methods which have utilized deep learning and knowledge graph techniques and group them into three main classes: deep learning-based methods, knowledge graph-based methods, and methods that combine deep learning with knowledge graph. We comprehensively analyze the commonly used drug related data and various DDI prediction methods, and compare these prediction methods on benchmark datasets. Finally, we briefly discuss the challenges related to drug-drug interactions prediction, including asymmetric DDIs prediction and high-order DDI prediction.

          Graphical abstract

          Abstract

          Health sciences; Medicine; Medical specialty; Health informatics; Biological sciences; Bioinformatics; Pharmacoinformatics

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            DrugBank 5.0: a major update to the DrugBank database for 2018

            Abstract DrugBank (www.drugbank.ca) is a web-enabled database containing comprehensive molecular information about drugs, their mechanisms, their interactions and their targets. First described in 2006, DrugBank has continued to evolve over the past 12 years in response to marked improvements to web standards and changing needs for drug research and development. This year’s update, DrugBank 5.0, represents the most significant upgrade to the database in more than 10 years. In many cases, existing data content has grown by 100% or more over the last update. For instance, the total number of investigational drugs in the database has grown by almost 300%, the number of drug-drug interactions has grown by nearly 600% and the number of SNP-associated drug effects has grown more than 3000%. Significant improvements have been made to the quantity, quality and consistency of drug indications, drug binding data as well as drug-drug and drug-food interactions. A great deal of brand new data have also been added to DrugBank 5.0. This includes information on the influence of hundreds of drugs on metabolite levels (pharmacometabolomics), gene expression levels (pharmacotranscriptomics) and protein expression levels (pharmacoprotoemics). New data have also been added on the status of hundreds of new drug clinical trials and existing drug repurposing trials. Many other important improvements in the content, interface and performance of the DrugBank website have been made and these should greatly enhance its ease of use, utility and potential applications in many areas of pharmacological research, pharmaceutical science and drug education.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              KEGG: new perspectives on genomes, pathways, diseases and drugs

              KEGG (http://www.kegg.jp/ or http://www.genome.jp/kegg/) is an encyclopedia of genes and genomes. Assigning functional meanings to genes and genomes both at the molecular and higher levels is the primary objective of the KEGG database project. Molecular-level functions are stored in the KO (KEGG Orthology) database, where each KO is defined as a functional ortholog of genes and proteins. Higher-level functions are represented by networks of molecular interactions, reactions and relations in the forms of KEGG pathway maps, BRITE hierarchies and KEGG modules. In the past the KO database was developed for the purpose of defining nodes of molecular networks, but now the content has been expanded and the quality improved irrespective of whether or not the KOs appear in the three molecular network databases. The newly introduced addendum category of the GENES database is a collection of individual proteins whose functions are experimentally characterized and from which an increasing number of KOs are defined. Furthermore, the DISEASE and DRUG databases have been improved by systematic analysis of drug labels for better integration of diseases and drugs with the KEGG molecular networks. KEGG is moving towards becoming a comprehensive knowledge base for both functional interpretation and practical application of genomic information.
                Bookmark

                Author and article information

                Contributors
                Journal
                iScience
                iScience
                iScience
                Elsevier
                2589-0042
                07 February 2024
                15 March 2024
                07 February 2024
                : 27
                : 3
                : 109148
                Affiliations
                [1 ]School of Computer and Information Engineering, Henan University, Kaifeng, China
                [2 ]Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
                [3 ]Academy for Advanced Interdisciplinary Studies, Zhengzhou, China
                [4 ]College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
                Author notes
                []Corresponding author ckyan@ 123456henu.edu.cn
                Article
                S2589-0042(24)00369-9 109148
                10.1016/j.isci.2024.109148
                10884936
                38405609
                62d39bd6-8f2c-42f7-9ccc-fe365be591c0
                © 2024 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Review

                health sciences,medicine,medical specialty,health informatics,biological sciences,bioinformatics,pharmacoinformatics

                Comments

                Comment on this article