2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Citric Acid Promoting B Lymphocyte Differentiation and Anti-epithelial Cells Apoptosis Mediate the Protective Effects of Hermetia illucens Feed in ETEC Induced Piglets Diarrhea

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Newborn piglets are prone to diarrhea after weaning as a result of changes in their environment and feed. Enterotoxigenic Escherichia coli (ETEC) K88 strain is a typical pathogen that causes diarrhea in such stage of piglets. Hermetia illucens larvae are widely used in livestock and poultry production because of their high nutritional value and immunoregulatory effects. This study aimed to evaluate the protective effects of H. illucens feed in protecting against ETEC induced diarrhea in piglets and to unravel the mechanisms of immune modulation and intestinal barrier maintenance. The results showed that after ETEC infection, citric acid in the serum of the groups fed on H. illucens larvae increased significantly, which stimulated macrophages to secrete cytokines that promote B lymphocyte differentiation, ultimately increasing the production of IgA and IgG in serum. Concomitantly, citric acid also had a positive effect on the intestinal barrier damaged due to ETEC infection by inhibiting the production of inflammatory cytokines, reducing the Bcl-2/Bax ratio, and promoting the expression of tight junction proteins. Correlation analysis showed that the increase of citric acid levels might be related to Massilia. Thus, citric acid derived from H. illucens larvae can improve the immune performance of weaned piglets and reduce ETEC-induced damage to the intestinal barrier in weaned piglets.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry.

          Metabolism has an essential role in biological systems. Identification and quantitation of the compounds in the metabolome is defined as metabolic profiling, and it is applied to define metabolic changes related to genetic differences, environmental influences and disease or drug perturbations. Chromatography-mass spectrometry (MS) platforms are frequently used to provide the sensitive and reproducible detection of hundreds to thousands of metabolites in a single biofluid or tissue sample. Here we describe the experimental workflow for long-term and large-scale metabolomic studies involving thousands of human samples with data acquired for multiple analytical batches over many months and years. Protocols for serum- and plasma-based metabolic profiling applying gas chromatography-MS (GC-MS) and ultraperformance liquid chromatography-MS (UPLC-MS) are described. These include biofluid collection, sample preparation, data acquisition, data pre-processing and quality assurance. Methods for quality control-based robust LOESS signal correction to provide signal correction and integration of data from multiple analytical batches are also described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bcl-2 functions in an antioxidant pathway to prevent apoptosis.

            Bcl-2 inhibits most types of apoptotic cell death, implying a common mechanism of lethality. Bcl-2 is localized to intracellular sites of oxygen free radical generation including mitochondria, endoplasmic reticula, and nuclear membranes. Antioxidants that scavenge peroxides, N-acetylcysteine and glutathione peroxidase, countered apoptotic death, while manganese superoxide dismutase did not. Bcl-2 protected cells from H2O2- and menadione-induced oxidative deaths. Bcl-2 did not prevent the cyanide-resistant oxidative burst generated by menadione. Two model systems of apoptosis showed no increment in cyanide-resistant respiration, and generation of endogenous peroxides continued at an inherent rate that was unaltered by Bcl-2. Following an apoptotic signal, cells sustained progressive lipid peroxidation. Overexpression of Bcl-2 functioned to suppress lipid peroxidation completely. We propose a model in which Bcl-2 regulates an antioxidant pathway at sites of free radical generation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health.

              Weaning is a critical event in the pig's life cycle, frequently associated with severe enteric infections and overuse of antibiotics; this raises serious economic and public health concerns. In this review, we explain why gut microbiota dysbiosis, induced by abrupt changes in the diet and environment of piglets, emerges as a leading cause of post-weaning diarrhea, even if the exact underlying mechanisms remain unclear. Then, we focus on nonantimicrobial alternatives, such as zinc oxide, essential oils, and prebiotics or probiotics, which are currently evaluated to restore intestinal balance and allow a better management of the crucial weaning transition. Finally, we discuss how in vitro models of the piglet gut could be advantageously used as a complement to ex vivo and in vivo studies for the development and testing of new feed additives.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Vet Sci
                Front Vet Sci
                Front. Vet. Sci.
                Frontiers in Veterinary Science
                Frontiers Media S.A.
                2297-1769
                30 November 2021
                2021
                : 8
                : 751861
                Affiliations
                [1] 1College of Animal Science & Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering , Guangzhou, China
                [2] 2College of Veterinary Medicine, Jilin University , Changchun, China
                [3] 3State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center , Guangzhou, China
                [4] 4Special Police Academy of Chinese People's Armed Police Force , Beijing, China
                [5] 5The First Hospital of Jilin University , Changchun, China
                Author notes

                Edited by: Jianzhu Liu, Shandong Agricultural University, China

                Reviewed by: Yaoyao Xia, South China Agricultural University, China; Yulong Zhou, Heilongjiang Bayi Agricultural University, China

                *Correspondence: Yanhua Huang huangyh111@ 123456126.com

                This article was submitted to Animal Nutrition and Metabolism, a section of the journal Frontiers in Veterinary Science

                †These authors have contributed equally to this work

                Article
                10.3389/fvets.2021.751861
                8669560
                634085c6-ffca-46e9-b908-b345748a1154
                Copyright © 2021 Liu, Yuan, Jin, Zhu, Xu, Xie, Wang, Zhang, Xu, Li, Huang, Lv and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 August 2021
                : 25 October 2021
                Page count
                Figures: 8, Tables: 2, Equations: 0, References: 45, Pages: 14, Words: 8091
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Categories
                Veterinary Science
                Original Research

                weaning piglets,enterotoxigenic escherichia coli (etec) k88,hermetia illucens,citric acid (ca),b lymphocyte,intestinal barrier

                Comments

                Comment on this article