34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sonic hedgehog regulates branching morphogenesis in the mammalian lung

      , ,
      Current Biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mammalian lung, like many other organs, develops by branching morphogenesis of an epithelium [1]. Development initiates with evagination of two ventral buds of foregut endoderm into the underlying splanchnic mesoderm. As the buds extend, they send out lateral branches at precise, invariant positions, establishing the primary airways and the lobes of each lung. Dichotomous branching leads to further extension of the airways. Grafting studies have demonstrated the importance of bronchial mesenchyme in inducing epithelial branching, but the significance of epithelial signaling has largely been unstudied. The morphogen Sonic hedgehog (Shh) is widely expressed in the foregut endoderm and is specifically upregulated in the distal epithelium of the lung where branching is occurring [2]. Ectopic expression of Shh disrupts branching and increases proliferation, suggesting that local Shh signaling regulates lung development [2]. We report here that Shh is essential for development of the respiratory system. In Shh null mutants, we found that the trachea and esophagus do not separate properly and the lungs form a rudimentary sac due to failure of branching and growth after formation of the primary lung buds. Interestingly, normal proximo-distal differentiation of the airway epithelium occurred, indicating that Shh is not needed for differentiation events. In addition, the transcription of several mesenchymally expressed downstream targets of Shh is abolished. These results highlight the importance of epithelially derived Shh in regulating branching morphogenesis of the lung.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary.

          The thyroid-specific enhancer-binding protein (T/ebp) gene was disrupted by homologous recombination in embryonic stem cells to generate mice lacking T/EBP expression. Heterozygous animals developed normally, whereas mice homozygous for the disrupted gene were born dead and lacked the lung parenchyma. Instead, they had a rudimentary bronchial tree associated with an abnormal epithelium in their pleural cavities. Furthermore, the homozygous mice had no thyroid gland but had a normal parathyroid. In addition, extensive defects were found in the brain of the homozygous mice, especially in the ventral region of the forebrain. The entire pituitary, including the anterior, intermediate, and posterior pituitary, was also missing. In situ hybridization showed that the T/ebp gene is expressed in the normal thyroid, lung bronchial epithelium, and specific areas of the forebrain during early embryogenesis. These results establish that the expression of T/EBP, a transcription factor known to control thyroid-specific gene transcription, is also essential for organogenesis of the thyroid, lung, ventral forebrain, and pituitary.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sonic hedgehog signaling is essential for hair development.

            The skin is responsible for forming a variety of epidermal structures that differ amongst vertebrates. In each case the specific structure (for example scale, feather or hair) arises from an epidermal placode as a result of epithelial-mesenchymal interactions with the underlying dermal mesenchyme. Expression of members of the Wnt, Hedgehog and bone morphogenetic protein families (Wnt10b, Sonic hedgehog (Shh) and Bmp2/Bmp4, respectively) in the epidermis correlates with the initiation of hair follicle formation. Further, their expression continues into either the epidermally derived hair matrix which forms the hair itself, or the dermal papilla which is responsible for induction of the hair matrix. To address the role of Shh in the hair follicle, we have examined Shh null mutant mice. We found that follicle development in the Shh mutant embryo arrested after the initial epidermal-dermal interactions that lead to the formation of a dermal papilla anlage and ingrowth of the epidermis. Wnt10b, Bmp2 and Bmp4 continued to be expressed at this time, however. When grafted to nude mice (which lack T cells), Shh mutant skin gave rise to large abnormal follicles containing a small dermal papilla. Although these follicles showed high rates of proliferation and some differentiation of hair matrix cells into hair-shaft-like material, no hair was formed. Shh signaling is not required for initiating hair follicle development. Shh signaling is essential, however, for controlling ingrowth and morphogenesis of the hair follicle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome.

              Dorsal-ventral limb patterning in vertebrates is thought to be controlled by the LIM-homeodomain protein Lmx1b which is expressed in a spatially and temporally restricted manner along the dorsal-ventral limb axis. Here we describe the phenotype resulting from targeted disruption of Lmx1b. Our results demonstrate that Lmx1b is essential for the specification of dorsal limb fates at both the zeugopodal and autopodal level with prominent phenotypes including an absence of nails and patellae. These features are similar to those present in a dominantly inherited human condition called nail patella syndrome (NPS), which also has renal involvement. Mouse Lmx1b maps to a region syntenic to that of the NPS gene, and kidneys of Lmx1b mutant mice exhibit pathological changes similar to that observed in NPS (refs 5,6). Our results demonstrate an essential function for Lmx1b in mouse limb and kidney development and suggest that NPS might result from mutations in the human LMX1B gene.
                Bookmark

                Author and article information

                Journal
                Current Biology
                Current Biology
                Elsevier BV
                09609822
                September 1998
                September 1998
                : 8
                : 19
                : 1083-1086
                Article
                10.1016/S0960-9822(98)70446-4
                9768363
                63c4a55e-e8a1-4c85-8ca7-21c1424d331d
                © 1998

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article