119
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Two-Dimensional Gas of Massless Dirac Fermions in Graphene

          Electronic properties of materials are commonly described by quasiparticles that behave as non-relativistic electrons with a finite mass and obey the Schroedinger equation. Here we report a condensed matter system where electron transport is essentially governed by the Dirac equation and charge carriers mimic relativistic particles with zero mass and an effective "speed of light" c* ~10^6m/s. Our studies of graphene - a single atomic layer of carbon - have revealed a variety of unusual phenomena characteristic of two-dimensional (2D) Dirac fermions. In particular, we have observed that a) the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; b) graphene's conductivity never falls below a minimum value corresponding to the conductance quantum e^2/h, even when carrier concentrations tend to zero; c) the cyclotron mass m of massless carriers with energy E in graphene is described by equation E =mc*^2; and d) Shubnikov-de Haas oscillations in graphene exhibit a phase shift of pi due to Berry's phase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Experimental Observation of Quantum Hall Effect and Berry's Phase in Graphene

            When electrons are confined in two-dimensional (2D) materials, quantum mechanically enhanced transport phenomena, as exemplified by the quantum Hall effects (QHE), can be observed. Graphene, an isolated single atomic layer of graphite, is an ideal realization of such a 2D system. Here, we report an experimental investigation of magneto transport in a high mobility single layer of graphene. Adjusting the chemical potential using the electric field effect, we observe an unusual half integer QHE for both electron and hole carriers in graphene. Vanishing effective carrier masses is observed at Dirac point in the temperature dependent Shubnikov de Haas oscillations, which probe the 'relativistic' Dirac particle-like dispersion. The relevance of Berry's phase to these experiments is confirmed by the phase shift of magneto-oscillations, related to the exceptional topology of the graphene band structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ultrahigh electron mobility in suspended graphene

              We have achieved mobilities in excess of 200,000 cm^2/Vs at electron densities of ~2*10^11 cm^-2 by suspending single layer graphene. Suspension ~150 nm above a Si/SiO_2 gate electrode and electrical contacts to the graphene was achieved by a combination of electron beam lithography and etching. The specimens were cleaned in situ by employing current-induced heating, directly resulting in a significant improvement of electrical transport. Concomitant with large mobility enhancement, the widths of the characteristic Dirac peaks are reduced by a factor of 10 compared to traditional, non-suspended devices. This advance should allow for accessing the intrinsic transport properties of graphene.
                Bookmark

                Author and article information

                Journal
                npj 2D Materials and Applications
                npj 2D Mater Appl
                Springer Nature
                2397-7132
                December 2017
                April 11 2017
                December 2017
                : 1
                : 1
                Article
                10.1038/s41699-017-0008-4
                647a80ee-0103-46c1-bedb-ca5c361f9d07
                © 2017

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article