66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Potential for biomolecular imaging with femtosecond X-ray pulses

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sample damage by X-rays and other radiation limits the resolution of structural studies on non-repetitive and non-reproducible structures such as individual biomolecules or cells. Cooling can slow sample deterioration, but cannot eliminate damage-induced sample movement during the time needed for conventional measurements. Analyses of the dynamics of damage formation suggest that the conventional damage barrier (about 200 X-ray photons per A2 with X-rays of 12 keV energy or 1 A wavelength) may be extended at very high dose rates and very short exposure times. Here we have used computer simulations to investigate the structural information that can be recovered from the scattering of intense femtosecond X-ray pulses by single protein molecules and small assemblies. Estimations of radiation damage as a function of photon energy, pulse length, integrated pulse intensity and sample size show that experiments using very high X-ray dose rates and ultrashort exposures may provide useful structural information before radiation damage destroys the sample. We predict that such ultrashort, high-intensity X-ray pulses from free-electron lasers that are currently under development, in combination with container-free sample handling methods based on spraying techniques, will provide a new approach to structural determinations with X-rays.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          GROMACS: A message-passing parallel molecular dynamics implementation

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules.

              Radiation damage is the main problem which prevents the determination of the structure of a single biological macromolecule at atomic resolution using any kind of microscopy. This is true whether neutrons, electrons or X-rays are used as the illumination. For neutrons, the cross-section for nuclear capture and the associated energy deposition and radiation damage could be reduced by using samples that are fully deuterated and 15N-labelled and by using fast neutrons, but single molecule biological microscopy is still not feasible. For naturally occurring biological material, electrons at present provide the most information for a given amount of radiation damage. Using phase contrast electron microscopy on biological molecules and macromolecular assemblies of approximately 10(5) molecular weight and above, there is in theory enough information present in the image to allow determination of the position and orientation of individual particles: the application of averaging methods can then be used to provide an atomic resolution structure. The images of approximately 10,000 particles are required. Below 10(5) molecular weight, some kind of crystal or other geometrically ordered aggregate is necessary to provide a sufficiently high combined molecular weight to allow for the alignment. In practice, the present quality of the best images still falls short of that attainable in theory and this means that a greater number of particles must be averaged and that the molecular weight limitation is somewhat larger than the predicted limit. For X-rays, the amount of damage per useful elastic scattering event is several hundred times greater than for electrons at all wavelengths and energies and therefore the requirements on specimen size and number of particles are correspondingly larger. Because of the lack of sufficiently bright neutron sources in the foreseeable future, electron microscopy in practice provides the greatest potential for immediate progress.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                August 17 2000
                August 17 2000
                August 17 2000
                : 406
                : 6797
                : 752-757
                Article
                10.1038/35021099
                10963603
                64a901c5-1cea-42e0-8b78-7186ac0210ab
                © 2000

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article