18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      MG132-mediated inhibition of the ubiquitin–proteasome pathway ameliorates cancer cachexia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To evaluate the effect of proteasome inhibitor MG132 in cancer cachexia and to delineate the molecular mechanism underlying.

          Methods

          We established an experimental cancer cachexia model by subcutaneously implanting colon 26 cells into the armpits of BALB/c mice. Following administration of MG132 at various time points, body weight, food intake, gastrocnemius muscle weight, spontaneous activity and survival of tumor-bearing mice were examined along with tumor growth. Moreover, cachectic markers including glucose, triglyceride, albumin and total proteins as well as levels of the proinflammatory cytokines TNF-α and IL-6 in serum and gastrocnemius tissue were measured. Finally, mRNA and protein levels of p65, IκBα, and ubiquitin E3 ligases MuRF1 and MAFbx in gastrocnemius muscle were assessed.

          Results

          MG132 treatment significantly alleviated cancer cachexia as demonstrated by attenuated weight loss, altered carbohydrate metabolism and muscle atrophy and increased spontaneous activity and survival time of tumor-bearing mice. MG132 reduced tumor growth and the levels of TNF-α and IL-6 in serum and gastrocnemius tissue. NF-κB, MuRF1 and MAFbx were also inhibited by MG132. Unexpectedly, MG132 was more efficient when administrated during the early stages of cachexia. MG132 had no effect on food intake of tumor-bearing mice.

          Conclusion

          Our results demonstrate that MG132-induced inhibition of the ubiquitin–proteasome pathway in cancer cachexia decreased the activity of NF-κB and the degradation of IκBα, and reduced the levels of TNF-α and IL-6 in serum and gastrocnemius tissue, accompanied by downregulation of MuRF1 and MAFbx. These data suggest that MG132 is a potential therapeutic and preventive agent for cancer cachexia.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          IKKbeta/NF-kappaB activation causes severe muscle wasting in mice.

          Muscle wasting accompanies aging and pathological conditions ranging from cancer, cachexia, and diabetes to denervation and immobilization. We show that activation of NF-kappaB, through muscle-specific transgenic expression of activated IkappaB kinase beta (MIKK), causes profound muscle wasting that resembles clinical cachexia. In contrast, no overt phenotype was seen upon muscle-specific inhibition of NF-kappaB through expression of IkappaBalpha superrepressor (MISR). Muscle loss was due to accelerated protein breakdown through ubiquitin-dependent proteolysis. Expression of the E3 ligase MuRF1, a mediator of muscle atrophy, was increased in MIKK mice. Pharmacological or genetic inhibition of the IKKbeta/NF-kappaB/MuRF1 pathway reversed muscle atrophy. Denervation- and tumor-induced muscle loss were substantially reduced and survival rates improved by NF-kappaB inhibition in MISR mice, consistent with a critical role for NF-kappaB in the pathology of muscle wasting and establishing it as an important clinical target for the treatment of muscle atrophy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival.

            Muscle wasting and cachexia have long been postulated to be key determinants of cancer-related death, but there has been no direct experimental evidence to substantiate this hypothesis. Here, we show that in several cancer cachexia models, pharmacological blockade of ActRIIB pathway not only prevents further muscle wasting but also completely reverses prior loss of skeletal muscle and cancer-induced cardiac atrophy. This treatment dramatically prolongs survival, even of animals in which tumor growth is not inhibited and fat loss and production of proinflammatory cytokines are not reduced. ActRIIB pathway blockade abolished the activation of the ubiquitin-proteasome system and the induction of atrophy-specific ubiquitin ligases in muscles and also markedly stimulated muscle stem cell growth. These findings establish a crucial link between activation of the ActRIIB pathway and the development of cancer cachexia. Thus ActRIIB antagonism is a promising new approach for treating cancer cachexia, whose inhibition per se prolongs survival. Copyright 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia.

              MyoD regulates skeletal muscle differentiation (SMD) and is essential for repair of damaged tissue. The transcription factor nuclear factor kappa B (NF-kappaB) is activated by the cytokine tumor necrosis factor (TNF), a mediator of skeletal muscle wasting in cachexia. Here, the role of NF-kappaB in cytokine-induced muscle degeneration was explored. In differentiating C2C12 myocytes, TNF-induced activation of NF-kappaB inhibited SMD by suppressing MyoD mRNA at the posttranscriptional level. In contrast, in differentiated myotubes, TNF plus interferon-gamma (IFN-gamma) signaling was required for NF-kappaB-dependent down-regulation of MyoD and dysfunction of skeletal myofibers. MyoD mRNA was also down-regulated by TNF and IFN-gamma expression in mouse muscle in vivo. These data elucidate a possible mechanism that may underlie the skeletal muscle decay in cachexia.
                Bookmark

                Author and article information

                Contributors
                tanglihua6969@sina.com
                Journal
                J Cancer Res Clin Oncol
                J. Cancer Res. Clin. Oncol
                Journal of Cancer Research and Clinical Oncology
                Springer-Verlag (Berlin/Heidelberg )
                0171-5216
                1432-1335
                28 March 2013
                2013
                : 139
                : 7
                : 1105-1115
                Affiliations
                [1 ]GRID grid.452206.7, Department of General Surgery, , The First Affiliated Hospital of Chongqing Medical University, ; 400016 Chongqing, China
                [2 ]GRID grid.203458.8, ISNI 0000000086530555, Department of Infectious Diseases and Gastroenterology, , Children’s Hospital Affiliated to Chongqing Medical University, ; 400016 Chongqing, China
                Article
                1412
                10.1007/s00432-013-1412-6
                7087863
                23535871
                6514ed4e-9b48-4ba0-824a-4c1820b18217
                © Springer-Verlag Berlin Heidelberg 2013

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 7 January 2013
                : 28 February 2013
                Categories
                Original Paper
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2013

                Oncology & Radiotherapy
                mg132,cancer cachexia,nf-κb,ubiquitin–proteasome pathway,inflammation
                Oncology & Radiotherapy
                mg132, cancer cachexia, nf-κb, ubiquitin–proteasome pathway, inflammation

                Comments

                Comment on this article