Blog
About

75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intermittent Preventive Treatment of Malaria in Pregnancy with Mefloquine in HIV-Infected Women Receiving Cotrimoxazole Prophylaxis: A Multicenter Randomized Placebo-Controlled Trial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clara Menéndez and colleagues conducted a randomized controlled trial among HIV-positive pregnant women in Kenya, Mozambique, and Tanzania to investigate the safety and efficacy of mefloquine as intermittent preventative therapy for malaria in women receiving cotrimoxazole prophylaxis and long-lasting insecticide treated nets.

          Please see later in the article for the Editors' Summary

          Abstract

          Background

          Intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) is recommended for malaria prevention in HIV-negative pregnant women, but it is contraindicated in HIV-infected women taking daily cotrimoxazole prophylaxis (CTXp) because of potential added risk of adverse effects associated with taking two antifolate drugs simultaneously. We studied the safety and efficacy of mefloquine (MQ) in women receiving CTXp and long-lasting insecticide treated nets (LLITNs).

          Methods and Findings

          A total of 1,071 HIV-infected women from Kenya, Mozambique, and Tanzania were randomized to receive either three doses of IPTp-MQ (15 mg/kg) or placebo given at least one month apart; all received CTXp and a LLITN. IPTp-MQ was associated with reduced rates of maternal parasitemia (risk ratio [RR], 0.47 [95% CI 0.27–0.82]; p = 0.008), placental malaria (RR, 0.52 [95% CI 0.29–0.90]; p = 0.021), and reduced incidence of non-obstetric hospital admissions (RR, 0.59 [95% CI 0.37–0.95]; p = 0.031) in the intention to treat (ITT) analysis. There were no differences in the prevalence of adverse pregnancy outcomes between groups. Drug tolerability was poorer in the MQ group compared to the control group (29.6% referred dizziness and 23.9% vomiting after the first IPTp-MQ administration). HIV viral load at delivery was higher in the MQ group compared to the control group ( p = 0.048) in the ATP analysis. The frequency of perinatal mother to child transmission of HIV was increased in women who received MQ (RR, 1.95 [95% CI 1.14–3.33]; p = 0.015). The main limitation of the latter finding relates to the exploratory nature of this part of the analysis.

          Conclusions

          An effective antimalarial added to CTXp and LLITNs in HIV-infected pregnant women can improve malaria prevention, as well as maternal health through reduction in hospital admissions. However, MQ was not well tolerated, limiting its potential for IPTp and indicating the need to find alternatives with better tolerability to reduce malaria in this particularly vulnerable group. MQ was associated with an increased risk of mother to child transmission of HIV, which warrants a better understanding of the pharmacological interactions between antimalarials and antiretroviral drugs.

          Trial registration

          ClinicalTrials.gov NCT 00811421; Pan African Clinical Trials Registry PACTR 2010020001813440

          Please see later in the article for the Editors' Summary

          Editors' Summary

          Background

          Malaria, a mosquito-borne parasitic disease, kills about 600,000 people every year. Most of these deaths occur among young children living in sub-Saharan Africa but pregnant women living in Africa are also very vulnerable to malaria. Infection with malaria during pregnancy can cause severe maternal anemia (reduced red blood cell numbers), stillbirths, and pre-term and low-birthweight babies, and is responsible for the deaths of many African women and their babies. To reduce the loss of life from malaria in pregnancy, the World Health Organization (WHO) recommends that pregnant women living in Africa receive the antimalarial drug sulfadoxine-pyrimethamine (SP) at each scheduled antenatal care visit given at least a month apart (intermittent preventive treatment in pregnancy [IPTp]). In addition, WHO advises pregnant women to sleep under insecticide-treated bed nets to protect themselves from the bites of infected mosquitoes and recommends effective case management of pregnant women with malarial illness.

          Why Was This Study Done?

          Pregnant women living in Africa are often infected with HIV, the virus that causes AIDS. HIV infection increases both the risk and severity of malaria infection during pregnancy, and at least one million pregnancies are complicated by co-infection with malaria and HIV in sub-Saharan Africa every year. WHO recommends that HIV-positive pregnant women take cotrimoxazole (CTX) daily to prevent opportunistic infections (CTX prophylaxis [CTXp]). Unfortunately, both CTX and SP are antifolate drugs and taking two drugs of this type increases a woman's risk of developing a severe skin reaction. Moreover, although CTXp protects children and HIV-infected adults against malaria, it is not known whether CTXp alone protects HIV-infected pregnant women adequately against malaria. Thus, evaluations of alternative drugs for use in IPTp in HIV-positive pregnant women are needed. In this randomized placebo-controlled trial, the researchers study the safety and efficacy of the antimalarial drug mefloquine (MQ) in HIV-infected women receiving CTXp. A randomized, placebo-controlled trial compares outcomes among people chosen through the play of chance to receive either the drug under investigation or a “dummy” (placebo) drug.

          What Did the Researchers Do and Find?

          The researchers allocated 1,071 HIV-infected pregnant women from Kenya, Mozambique, and Tanzania to receive three doses of MQ (IPTp-MQ), given at least one month apart, or three doses of placebo. All the women received CTXp and were given an insecticide-treated bed net. In an intention-to-treat analysis (an analysis that considers the outcomes of all trial participants irrespective of whether they receive their allocated treatment), the prevalence of parasitemia (parasites in the blood) at delivery among women given IPTp-MQ was 3.5% whereas the prevalence among women given the placebo was 6.9%. In other words, compared to placebo, IPTp-MQ was associated with a reduced risk of maternal parasitemia. IPTp-MQ was also associated with a reduced rate of placental malaria (parasites in the placenta) and a reduced incidence of hospital admissions for non-pregnancy related causes. There was no difference in adverse pregnancy outcomes such as stillbirth between the intervention groups but drug tolerability was poorer in the MQ group than in the placebo group. Finally, in an exploratory (unplanned) according-to-protocol analysis (an analysis that only considers outcomes in trial participants who receive their allocated intervention), women in the MQ group had a higher HIV viral load at delivery than women in the control group and were nearly twice as likely to transmit HIV to their child around the time of birth.

          What Do These Findings Mean?

          These findings suggest that the addition of IPTp-MQ to CTXp and the use of insecticide-treated bed nets can improve malaria prevention and maternal health in HIV-infected pregnant women in Africa. However, the poor tolerability of MQ and the association of MQ treatment with both an increased HIV viral load at delivery and a higher frequency of mother-to-child-transmission of HIV when compared to placebo raise concerns about the use of MQ in IPTp. Because these last two findings came from an exploratory analysis, which is more likely to throw up a chance finding than a pre-planned analysis further studies are needed to confirm these unexpected but potentially important findings. Nevertheless, overall, the findings of this study suggest that MQ should not be recommended for IPTp in HIV-infected pregnant women in Africa and highlight the need to find alternative drugs for malaria prevention in this group of women who are particularly vulnerable to malaria.

          Additional Information

          Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001735.

          Related collections

          Most cited references 53

          • Record: found
          • Abstract: found
          • Article: not found

          A modified poisson regression approach to prospective studies with binary data.

           G Zou (2004)
          Relative risk is usually the parameter of interest in epidemiologic and medical studies. In this paper, the author proposes a modified Poisson regression approach (i.e., Poisson regression with a robust error variance) to estimate this effect measure directly. A simple 2-by-2 table is used to justify the validity of this approach. Results from a limited simulation study indicate that this approach is very reliable even with total sample sizes as small as 100. The method is illustrated with two data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New Ballard Score, expanded to include extremely premature infants.

            The Ballard Maturational Score was refined and expanded to achieve greater accuracy and to include extremely premature neonates. To test validity, accuracy, interrater reliability, and optimal postnatal age at examination, the resulting New Ballard Score (NBS) was assessed for 578 newly born infants and the results were analyzed. Gestational ages ranged from 20 to 44 weeks and postnatal ages at examination ranged from birth to 96 hours. In 530 infants, gestational age by last menstrual period was confirmed by agreement within 2 weeks with gestational age by prenatal ultrasonography (C-GLMP). For these infants, correlation between gestational age by NBS and C-GLMP was 0.97. Mean differences between gestational age by NBS and C-GLMP were 0.32 +/- 1.58 weeks and 0.15 +/- 1.46 weeks among the extremely premature infants (less than 26 weeks) and among the total population, respectively. Correlations between the individual criteria and C-GLMP ranged from 0.72 to 0.82. Interrater reliability of NBS, as determined by correlation between raters who rated the same subgroup of infants, ws 0.95. For infants less than 26 weeks of gestational age, the greatest validity (97% within 2 weeks of C-GLMP) was seen when the examination was performed before 12 hours of postnatal age. For infants at least 26 weeks of gestational age, percentages of agreement with C-GLMP remained constant, averaging 92% for all postnatal age categories up to 96 hours. The NBS is a valid and accurate gestational assessment tool for extremely premature infants and remains valid for the entire newborn infant population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of methods for the rapid laboratory assessment of children with malaria.

              Rapid diagnosis and accurate quantification of Plasmodium falciparum parasitemia are important for the management of malaria. The assessment of disease severity also depends on evaluation of metabolic indexes such as blood glucose and lactate concentrations. Here we describe an accurate and rapid alternative to conventional thick film examination (Lambaréné method). We also assess near-patient methods for measuring blood glucose (OneTouch) and lactate (Accusport). The accuracy of the Lambaréné method is similar to that of thin films. Results from the OneTouch glucose meter also are in good agreement with a YSI 2300 reference meter. Overall, the Accusport lactate meter agrees poorly with the YSI 2300 reference meter. However, the sensitivity and specificity to detect hyperlactatemia (blood lactate > or = 5 mmol/L) are 0.94 and 0.98, respectively.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS Med
                PLoS
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                September 2014
                23 September 2014
                : 11
                : 9
                Affiliations
                [1 ]Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
                [2 ]Manhiça Health Research Center (CISM), Manhiça, Mozambique
                [3 ]Kenya Medical Research Institute/Centers for Disease Control and Prevention (KEMRI/CDC) Research and Public Health Collaboration, Kisumu, Kenya
                [4 ]Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America, and Kisumu, Kenya
                [5 ]Kenya Medical Research Institute (KEMRI)/Center for Global Health Research, Kisumu, Kenya
                [6 ]Ifakara Health Institute (IHI), Dodoma, Tanzania
                National Institute of Child Health and Human Development, United States of America
                Author notes

                ¶ Clara Menéndez, project coordinator and senior author.

                CM is a member of the Editorial Board of PLOS Medicine. The rest of coauthors have declared that no competing interests exist.

                Conceived and designed the experiments: JA MD RG CM LS. Performed the experiments: RG MAK HB AK SM AM KO MR AV. Analyzed the data: RG JA AN JW MR ES. Contributed reagents/materials/analysis tools: EM PO SA GP CM KO ES LS CM. Wrote the first draft of the manuscript: CM RG GP. Wrote the paper: RG MD EM PO MAK SA JA HB AMK AK SM AM AN KO GP MR ES LS AV JW CM. ICMJE criteria for authorship read and met: RG MD EM PO MAK SA JA HB AMK AK SM AM AN KO GP MR ES LS AV JW CM. Agree with manuscript results and conclusions: RG MD EM PO MAK SA JA HB AMK AK SM AM AN KO GP MR ES LS AV JW CM. Enrolled patients: RG MAK AK MR AV.

                Article
                PMEDICINE-D-14-00720
                10.1371/journal.pmed.1001735
                4172537
                25247995

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                Page count
                Pages: 18
                Funding
                No funding bodies had any role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This study was funded by the European Developing Countries Clinical Trials Partnership (EDCTP; IP.2007.31080.002), the Malaria in Pregnancy Consortium and the Instituto de Salud Carlos III (PI08/0564), Spain. RG and MR were partially supported by grants from the Spanish Ministry of Health (ref. CM07/0015 and CM11/00278, respectively). The CISM receives core funding from the Spanish Agency for international Cooperation (AECI).LLITNs (Permanet) were donated by Vestergaard Fransen and cotrimoxazole tablets (Septrin) by UCB Pharma, Spain. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention. This publication has been approved by the Director of KEMRI.
                Categories
                Research Article
                Biology and Life Sciences
                Plant Science
                Plant Pathology
                Infectious Disease Epidemiology
                Medicine and health sciences
                Epidemiology
                HIV epidemiology
                Parasitic Diseases
                Malaria
                Women's Health
                Maternal Health
                Antenatal Care
                Pregnancy

                Medicine

                Comments

                Comment on this article