41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Unified Framework to Evaluate Panmixia and Migration Direction Among Multiple Sampling Locations

      ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For many biological investigations, groups of individuals are genetically sampled from several geographic locations. These sampling locations often do not reflect the genetic population structure. We describe a framework using marginal likelihoods to compare and order structured population models, such as testing whether the sampling locations belong to the same randomly mating population or comparing unidirectional and multidirectional gene flow models. In the context of inferences employing Markov chain Monte Carlo methods, the accuracy of the marginal likelihoods depends heavily on the approximation method used to calculate the marginal likelihood. Two methods, modified thermodynamic integration and a stabilized harmonic mean estimator, are compared. With finite Markov chain Monte Carlo run lengths, the harmonic mean estimator may not be consistent. Thermodynamic integration, in contrast, delivers considerably better estimates of the marginal likelihood. The choice of prior distributions does not influence the order and choice of the better models when the marginal likelihood is estimated using thermodynamic integration, whereas with the harmonic mean estimator the influence of the prior is pronounced and the order of the models changes. The approximation of marginal likelihood using thermodynamic integration in MIGRATE allows the evaluation of complex population genetic models, not only of whether sampling locations belong to a single panmictic population, but also of competing complex structured population models.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: not found
          • Article: not found

          Bayes Factors

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach.

            A maximum likelihood estimator based on the coalescent for unequal migration rates and different subpopulation sizes is developed. The method uses a Markov chain Monte Carlo approach to investigate possible genealogies with branch lengths and with migration events. Properties of the new method are shown by using simulated data from a four-population n-island model and a source-sink population model. Our estimation method as coded in migrate is tested against genetree; both programs deliver a very similar likelihood surface. The algorithm converges to the estimates fairly quickly, even when the Markov chain is started from unfavorable parameters. The method was used to estimate gene flow in the Nile valley by using mtDNA data from three human populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity.

              We review commonly used population definitions under both the ecological paradigm (which emphasizes demographic cohesion) and the evolutionary paradigm (which emphasizes reproductive cohesion) and find that none are truly operational. We suggest several quantitative criteria that might be used to determine when groups of individuals are different enough to be considered 'populations'. Units for these criteria are migration rate (m) for the ecological paradigm and migrants per generation (Nm) for the evolutionary paradigm. These criteria are then evaluated by applying analytical methods to simulated genetic data for a finite island model. Under the standard parameter set that includes L = 20 High mutation (microsatellite-like) loci and samples of S = 50 individuals from each of n = 4 subpopulations, power to detect departures from panmixia was very high ( approximately 100%; P < 0.001) even with high gene flow (Nm = 25). A new method, comparing the number of correct population assignments with the random expectation, performed as well as a multilocus contingency test and warrants further consideration. Use of Low mutation (allozyme-like) markers reduced power more than did halving S or L. Under the standard parameter set, power to detect restricted gene flow below a certain level X (H(0): Nm < X) can also be high, provided that true Nm < or = 0.5X. Developing the appropriate test criterion, however, requires assumptions about several key parameters that are difficult to estimate in most natural populations. Methods that cluster individuals without using a priori sampling information detected the true number of populations only under conditions of moderate or low gene flow (Nm < or = 5), and power dropped sharply with smaller samples of loci and individuals. A simple algorithm based on a multilocus contingency test of allele frequencies in pairs of samples has high power to detect the true number of populations even with Nm = 25 but requires more rigorous statistical evaluation. The ecological paradigm remains challenging for evaluations using genetic markers, because the transition from demographic dependence to independence occurs in a region of high migration where genetic methods have relatively little power. Some recent theoretical developments and continued advances in computational power provide hope that this situation may change in the future.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                June 01 2010
                May 2010
                May 2010
                February 22 2010
                : 185
                : 1
                : 313-326
                Article
                10.1534/genetics.109.112532
                2870966
                20176979
                66271c8c-8154-434e-9d6b-d1f3e9fc01bf
                © 2010

                Comments

                Comment on this article