8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Determining sequencing depth in a single-cell RNA-seq experiment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An underlying question for virtually all single-cell RNA sequencing experiments is how to allocate the limited sequencing budget: deep sequencing of a few cells or shallow sequencing of many cells? Here we present a mathematical framework which reveals that, for estimating many important gene properties, the optimal allocation is to sequence at a depth of around one read per cell per gene. Interestingly, the corresponding optimal estimator is not the widely-used plug-in estimator, but one developed via empirical Bayes.

          Abstract

          For single-cell RNA-seq experiments the sequencing budget is limited, and how it should be optimally allocated to maximize information is not clear. Here the authors develop a mathematical framework to show that, for estimating many gene properties, the optimal allocation is to sequence at the depth of one read per cell per gene.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Normalized cuts and image segmentation

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sparse inverse covariance estimation with the graphical lasso.

            We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm--the graphical lasso--that is remarkably fast: It solves a 1000-node problem ( approximately 500,000 parameters) in at most a minute and is 30-4000 times faster than competing methods. It also provides a conceptual link between the exact problem and the approximation suggested by Meinshausen and Bühlmann (2006). We illustrate the method on some cell-signaling data from proteomics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The technology and biology of single-cell RNA sequencing.

              The differences between individual cells can have profound functional consequences, in both unicellular and multicellular organisms. Recently developed single-cell mRNA-sequencing methods enable unbiased, high-throughput, and high-resolution transcriptomic analysis of individual cells. This provides an additional dimension to transcriptomic information relative to traditional methods that profile bulk populations of cells. Already, single-cell RNA-sequencing methods have revealed new biology in terms of the composition of tissues, the dynamics of transcription, and the regulatory relationships between genes. Rapid technological developments at the level of cell capture, phenotyping, molecular biology, and bioinformatics promise an exciting future with numerous biological and medical applications.
                Bookmark

                Author and article information

                Contributors
                dntse@stanford.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                7 February 2020
                7 February 2020
                2020
                : 11
                : 774
                Affiliations
                [1 ]ISNI 0000000419368956, GRID grid.168010.e, Department of Electrical Engineering, , Stanford University, ; Stanford, CA USA
                [2 ]ISNI 0000000107068890, GRID grid.20861.3d, Division of Biology and Biological Engineering, , California Institute of Technology, ; Pasadena, CA USA
                Author information
                http://orcid.org/0000-0003-0006-2466
                Article
                14482
                10.1038/s41467-020-14482-y
                7005864
                32034137
                663cf7dd-162d-4e66-90fe-4f716a0598cc
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 6 September 2018
                : 13 December 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000051, U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI);
                Award ID: R01HG008164
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                genome informatics,statistical methods
                Uncategorized
                genome informatics, statistical methods

                Comments

                Comment on this article