6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      MUSCLE INJURIES AND REPAIR : CURRENT TRENDS IN RESEARCH

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 68

          • Record: found
          • Abstract: found
          • Article: not found

          Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells.

          Angiotensin II (Ang II) has been implicated in the development of progressive glomerulosclerosis, but the precise mechanism of this effect remains unclear. In an experimental model, we have shown previously that TGF-beta plays a key role in glomerulosclerosis by stimulating extracellular matrix protein synthesis, increasing matrix protein receptors, and altering protease/protease-inhibitor balance, thereby inhibiting matrix degradation. We hypothesized that Ang II contributes to glomerulosclerosis through induction of TGF-beta. Ang II treatment of rat mesangial cells in culture increased TGF-beta and matrix components biglycan, fibronectin, and collagen type I at both the mRNA and protein levels in a time- and dose-dependent manner. Saralasin, a competitive inhibitor of Ang II, prevented the stimulation. Ang II also promoted conversion of latent TGF-beta to the biologically active form. Coincubation of mesangial cells with Ang II and neutralizing antibody to TGF-beta blocked the Ang II-induced increases in matrix protein expression. Continuous in vivo administration of Ang II to normal rats for 7 d resulted in 70% increases in glomerular mRNA for both TGF-beta and collagen type I. These results indicate that Ang II induces mesangial cell synthesis of matrix proteins and show that these effects are mediated by Ang II induction of TGF-beta expression. This mechanism may well contribute to glomerulosclerosis in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice.

            The avian skeletal alpha-actin gene was used as a template for construction of a myogenic expression vector that was utilized to direct expression of a human IGF-I cDNA in cultured muscle cells and in striated muscle of transgenic mice. The proximal promoter region, together with the first intron and 1.8 kilobases of 3'-noncoding flanking sequence of the avian skeletal alpha-actin gene directed high level expression of human insulin-like growth factor I (IGF-I) in stably transfected C2C12 myoblasts and transgenic mice. Expression of the actin/IGF-I hybrid gene in C2C12 muscle cells increased levels of myogenic basic helix-loop-helix factor and contractile protein mRNAs and enhanced myotube formation. Expression of the actin/IGF-I hybrid gene in mice elevated IGF-I concentrations in skeletal muscle 47-fold resulting in myofiber hypertrophy. IGF-I concentrations in serum and body weight were not increased by transgene expression, suggesting that the effects of transgene expression were localized. These results indicate that sustained overexpression of IGF-I in skeletal muscle elicits myofiber hypertrophy and provides the basis for manipulation of muscle physiology utilizing skeletal alpha-actin-based vectors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy.

              Diabetes is now the most common cause of progressive kidney failure leading to dialysis or transplantation. The central pathological feature of diabetic nephropathy is accumulation of extracellular matrix within the glomeruli. The factors in the diabetic milieu responsible for extracellular matrix accumulation are not understood. Here we report that in glomeruli of rats made diabetic there is a slow, progressive increase in the expression of transforming growth factor beta (TGF-beta) mRNA and TGF-beta protein. A key action of TGF-beta is induction of extracellular matrix production, and specific matrix proteins known to be induced by TGF-beta were increased in diabetic rat glomeruli. These proteins include an alternatively spliced form of fibronectin, tenascin, and the proteoglycan biglycan. TGF-beta has not previously been implicated in the matrix accumulation that occurs in the diabetic kidney. Glomeruli from humans with diabetic nephropathy also showed a striking increase in immunoreactive TGF-beta protein and deposition of the special form of fibronectin, whereas glomeruli from normal subjects or from individuals with other glomerular diseases (where extracellular matrix accumulation is not a feature) were negative or barely positive. These results implicate TGF-beta in the pathogenesis of diabetic nephropathy.
                Bookmark

                Author and article information

                Journal
                The Journal of Bone and Joint Surgery-American Volume
                The Journal of Bone and Joint Surgery-American Volume
                Ovid Technologies (Wolters Kluwer Health)
                0021-9355
                2002
                May 2002
                : 84
                : 5
                : 822-832
                Article
                10.2106/00004623-200205000-00022
                © 2002

                Comments

                Comment on this article