Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioactivities of major constituents isolated from Angelica sinensis ( Danggui)

      review-article
      1 , 1 ,
      Chinese Medicine
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Danggui, also known as Angelica sinensis (Oliv.) Diels (Apiaceae), has been used in Chinese medicine to treat menstrual disorders. Over 70 compounds have been isolated and identified from Danggui. The main chemical constituents of Angelica roots include ferulic acid, Z-ligustilide, butylidenephthalide and various polysaccharides. Among these compounds, ferulic acid exhibits many bioactivities especially anti-inflammatory and immunostimulatory effects; Z-ligustilide exerts anti-inflammatory, anti-cancer, neuroprotective and anti-hepatotoxic effects; n-butylidenephthalide exerts anti-inflammatory, anti-cancer and anti-cardiovascular effects.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Immunomodulation and anti-cancer activity of polysaccharide-protein complexes.

          In the last three decades, numerous polysaccharides and polysaccharide-protein complexes have been isolated from mushrooms and used as a source of therapeutic agents. The most promising biopharmacological activities of these biopolymers are their immunomodulation and anti-cancer effects. They are mainly present as glucans with different types of glycosidic linkages such as (1-->3), (1-->6)-beta-glucans and (1-->3)-alpha-glucans, and as true herteroglycans, while others mostly bind to protein residues as polysaccharide-protein complexes. Three antitumor mushroom polysaccharides, i.e. lentinan, schizophyllan and protein-bound polysaccharide (PSK, Krestin), isolated respectively, from Lentinus edodes, Schizophyllum commune and Coriolus versicolor, have become large market items in Japan. Lentinan and schizophyllan are pure beta-glucans, whereas PSK is a protein-bound beta-glucan. A polysaccharide peptide (PSP), isolated from a strain of Coriolus versicolor in China, has also been widely used as an anti-cancer and immunomodulatory agent. Although the mechansim of their antitumor action is still not completely clear, these polysaccharides and polysaccharide-protein complexes are suggested to enhance cell-mediated immune responses in vivo and in vitro and act as biological response modifiers. Potentiation of the host defense system may result in the activation of many kinds of immune cells that are vitally important for the maintenance of homeostasis. Polysaccharides or polysaccharide-protein complexes are considered as multi-cytokine inducers that are able to induce gene expression of vaious immunomodulatory cytokines and cytokine receptors. Some interesting studies focus on investigation of the relationship between their structure and antitumor activity, elucidation of their antitumor mechanism at the molecular level, and improvement of their various biological activities by chemical modifications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway.

            Glomerulosclerosis, interstitial fibrosis, and tubular atrophy occur with end-stage kidney failure, irrespective of the primary etiology. The transforming growth factor-beta (TGF-beta) is a key factor in these alterations either directly, by stimulating synthesis of extracellular matrix components and reducing collagenase production, or indirectly through other profibrogenic factors such as connective tissue growth factor (CTGF). TGF-beta is important for the proliferation of intrarenal fibroblasts and the epithelial-mesenchymal transition through which tubular cells become fibroblasts. Although several factors induce TGF-beta expression in the kidney, one very interesting aspect is the link between the renin-angiotensin-aldosterone (Aldo) system (RAAS) and TGF-beta. Angiotensin II (ANG II) stimulates TGF-beta expression in the kidney by various mechanisms and upregulates receptors for TGF-beta. ANG II can directly phosphorylate Smads without inducing TGF-beta. Recent data provide compelling evidence that other components of the RAAS including ANG III, renin, and Aldo also activate the TGF-beta system. As direct modulation of the TGF-beta system is not yet feasible in humans, angiotensin-converting enzyme (ACE) inhibitors and angiotensin type 1 (AT1)-receptor blockers are currently the most potential drugs to interfere with this ANG II-mediated TGF-beta expression. This review highlights some current aspects of the interaction between the RAAS and the TGF-beta axis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid.

              1. beta-Amyloid peptide (A beta), a 39 -- 43 amino acid peptide, is believed to induce oxidative stress and inflammation in the brain, which are postulated to play important roles in the pathogenesis of Alzheimer's disease. Ferulic acid is an antioxidant and anti-inflammatory agent derived from plants; therefore, the potential protective activity of ferulic acid against A beta toxicity in vivo was examined. 2. Mice were allowed free access to drinking water (control) or water containing ferulic acid (0.006%). After 4 weeks, A beta 1-42 (410 pmol) was administered via intracerebroventricular injection. 3. Injection of control mice with A beta 1-42 impaired performance on the passive avoidance test (35% decrease in step-through latency), the Y-maze test (19% decrease in alternation behaviour), and the water maze test (32% decrease in percentage time in platform-quadrant). In contrast, mice treated with ferulic acid prior to A beta 1-42 administration were protected from these changes (9% decrease in step-through latency; no decrease in alternation behaviour; 14% decrease in percentage time in platform-quadrant). A beta 1-42 induced 31% decrease in acetylcholine level in the cortex, which was tended to be ameliorated by ferulic acid. 4. In addition, A beta 1-42 increased immunoreactivities of the astrocyte marker glial fibrillary acidic protein (GFAP) and interleukin-1 beta (IL-1 beta) in the hippocampus, effects also suppressed by pretreatment with ferulic acid. 5. Administration of ferulic acid per se unexpectedly induced a transient and slight increase in GFAP and IL-1 beta immunoreactivity in the hippocampus on day 14, which returned to basal levels on day 28. A slight (8%) decrease in alternation behaviour was observed on day 14. 6. These results demonstrate that long-term administration of ferulic acid induces resistance to A beta 1-42 toxicity in the brain, and suggest that ferulic acid may be a useful chemopreventive agent against Alzheimer's disease.
                Bookmark

                Author and article information

                Journal
                Chin Med
                Chinese Medicine
                BioMed Central
                1749-8546
                2011
                19 August 2011
                : 6
                : 29
                Affiliations
                [1 ]Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
                Article
                1749-8546-6-29
                10.1186/1749-8546-6-29
                3170324
                21851645
                673b271b-ac15-4137-9f62-d5d578ba1697
                Copyright ©2011 Chao and Lin; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 March 2011
                : 19 August 2011
                Categories
                Review

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article