23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Determining EGFR-TKI sensitivity of G719X and other uncommon EGFR mutations in non-small cell lung cancer: Perplexity and solution

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutations in epidermal growth factor receptor (EGFR) play critical roles in the pathogenesis of non-small cell lung cancer (NSCLC), and they are highly associated with sensitivity to tyrosine kinase inhibitors (TKIs). While the pathogenic and pharmacological characteristics of common mutations in EGFR have been thoroughly investigated, those of uncommon mutations remain to be elucidated. Traditional approaches to study common mutations by randomized controlled trials are not feasible for uncommon mutations owing to their rarity. Therefore, by systematically reviewing laboratory and clinical studies of the G719X mutation, one of the uncommon mutations, we concluded that the G719X mutation was intermediately sensitive to TKIs, with an average response rate of 35.1% (47/134). Moreover, accordingly, we proposed a comprehensive model to investigate uncommon mutations in EGFR. The model involves both basic and clinical components, composed of structural analyses, functional alterations, cell viabilities and animal models with various types of clinical studies. In this review, we systematically reviewed studies of the G719X mutation and put forward a research model that could be generalized to explore uncommon mutations in diseases associated with gene mutations.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib.

          Epidermal growth factor receptor (EGFR) mutations have been associated with tumor response to treatment with single-agent EGFR inhibitors in patients with relapsed non-small-cell lung cancer (NSCLC). The implications of EGFR mutations in patients treated with EGFR inhibitors plus first-line chemotherapy are unknown. KRAS is frequently activated in NSCLC. The relationship of KRAS mutations to outcome after EGFR inhibitor treatment has not been described. Previously untreated patients with advanced NSCLC in the phase III TRIBUTE study who were randomly assigned to carboplatin and paclitaxel with erlotinib or placebo were assessed for survival, response, and time to progression (TTP). EGFR exons 18 through 21 and KRAS exon 2 were sequenced in tumors from 274 patients. Outcomes were correlated with EGFR and KRAS mutations in retrospective subset analyses. EGFR mutations were detected in 13% of tumors and were associated with longer survival, irrespective of treatment (P < .001). Among erlotinib-treated patients, EGFR mutations were associated with improved response rate (P < .05) and there was a trend toward an erlotinib benefit on TTP (P = .092), but not improved survival (P = .96). KRAS mutations (21% of tumors) were associated with significantly decreased TTP and survival in erlotinib plus chemotherapy-treated patients. EGFR mutations may be a positive prognostic factor for survival in advanced NSCLC patients treated with chemotherapy with or without erlotinib, and may predict greater likelihood of response. Patients with KRAS-mutant NSCLC showed poorer clinical outcomes when treated with erlotinib and chemotherapy. Further studies are needed to confirm the findings of this retrospective subset analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A comprehensive pathway map of epidermal growth factor receptor signaling

            The epidermal growth factor receptor (EGFR) signaling pathway is one of the most important pathways that regulate growth, survival, proliferation, and differentiation in mammalian cells. Reflecting this importance, it is one of the best-investigated signaling systems, both experimentally and computationally, and several computational models have been developed for dynamic analysis. A map of molecular interactions of the EGFR signaling system is a valuable resource for research in this area. In this paper, we present a comprehensive pathway map of EGFR signaling and other related pathways. The map reveals that the overall architecture of the pathway is a bow-tie (or hourglass) structure with several feedback loops. The map is created using CellDesigner software that enables us to graphically represent interactions using a well-defined and consistent graphical notation, and to store it in Systems Biology Markup Language (SBML).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations.

              Somatic mutations in the epidermal growth factor receptor (EGFR) correlate with increased response in patients with non-small-cell lung cancer (NSCLC) treated with EGFR tyrosine kinase inhibitors (TKIs). The multicenter iTARGET trial prospectively examined first-line gefitinib in advanced NSCLC patients harboring EGFR mutations and explored the significance of EGFR mutation subtypes and TKI resistance mechanisms. Chemotherapy-naïve patients with advanced NSCLC with >or= 1 clinical characteristic associated with EGFR mutations underwent direct DNA sequencing of tumor tissue EGFR exons 18 to 21. Patients found to harbor any EGFR mutation were treated with gefitinib 250 mg/d until progression or unacceptable toxicity. The primary outcome was response rate. Ninety-eight patients underwent EGFR screening and mutations were detected in 34 (35%). EGFR mutations were primarily exon 19 deletions (53%) and L858R (26%) though 21% of mutation-positive cases had less common subtypes including exon 20 insertions, T790M/L858R, G719A, and L861Q. Thirty-one patients received gefitinib. The response rate was 55% (95% CI, 33 to 70) and median progression-free survival was 9.2 months (95% CI, 6.2 to 11.8). Therapy was well tolerated; 13% of patients had grade 3 toxicities including one grade 3 pneumonitis. Two patients with classic activating mutations exhibited de novo gefitinib resistance and had concurrent genetic anomalies usually associated with acquired TKI resistance, specifically the T790M EGFR mutation and MET amplification. First-line therapy with gefitinib administered in a genotype-directed fashion to patients with advanced NSCLC harboring EGFR mutations results in very favorable clinical outcomes with good tolerance. This strategy should be compared with combination chemotherapy, the current standard of care.
                Bookmark

                Author and article information

                Journal
                Oncol Rep
                Oncol. Rep
                Oncology Reports
                D.A. Spandidos
                1021-335X
                1791-2431
                March 2017
                30 January 2017
                30 January 2017
                : 37
                : 3
                : 1347-1358
                Affiliations
                [1 ]Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
                [2 ]Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
                Author notes
                Correspondence to: Professor Naixin Liang or Professor Shanqing Li, Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng, Beijing 100730, P.R. China, E-mail: liangnaixin@ 123456pumch.cn , E-mail: lsq6768@ 123456sohu.com
                [*]

                Contributed equally

                Article
                or-37-03-1347
                10.3892/or.2017.5409
                5364853
                28184913
                673cf0e1-5131-4c8d-a17a-265b7f11d693
                Copyright: © Li et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 25 August 2016
                : 19 January 2017
                Categories
                Review

                epidermal growth factor receptor,non-small cell lung cancer,uncommon mutations,g719x mutation,tyrosine kinase inhibitor,tyrosine kinase inhibitor sensitivity,targeted therapy,methodology

                Comments

                Comment on this article