147
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pre-ribosomal particles evolve in the nucleus through transient interaction with biogenesis factors, before export to the cytoplasm. Here, we report the architecture of the late pre-60S particle purified from Saccharomyces cerevisiae through Arx1, a nuclear export factor with structural homology to methionine aminopeptidases, or its binding partner Alb1. Cryo-electron microscopy reconstruction of the Arx1-particle at 11.9 Å resolution reveals regions of extra densities on the pre-60S particle attributed to associated biogenesis factors, confirming the immature state of the nascent subunit. One of these densities could be unambiguously assigned to Arx1. Immuno-electron microscopy and UV cross-linking localize Arx1 close to the ribosomal exit tunnel in direct contact with ES27, a highly dynamic eukaryotic rRNA expansion segment. The binding of Arx1 at the exit tunnel may position this export factor to prevent premature recruitment of ribosome-associated factors active during translation.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          The tandem affinity purification (TAP) method: a general procedure of protein complex purification.

          Identification of components present in biological complexes requires their purification to near homogeneity. Methods of purification vary from protein to protein, making it impossible to design a general purification strategy valid for all cases. We have developed the tandem affinity purification (TAP) method as a tool that allows rapid purification under native conditions of complexes, even when expressed at their natural level. Prior knowledge of complex composition or function is not required. The TAP method requires fusion of the TAP tag, either N- or C-terminally, to the target protein of interest. Starting from a relatively small number of cells, active macromolecular complexes can be isolated and used for multiple applications. Variations of the method to specifically purify complexes containing two given components or to subtract undesired complexes can easily be implemented. The TAP method was initially developed in yeast but can be successfully adapted to various organisms. Its simplicity, high yield, and wide applicability make the TAP method a very useful procedure for protein purification and proteome exploration. Copyright 2001 Academic Press.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The PyMOL molecular graphics system

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Driving ribosome assembly.

              Ribosome biogenesis is a fundamental process that provides cells with the molecular factories for cellular protein production. Accordingly, its misregulation lies at the heart of several hereditary diseases (e.g., Diamond-Blackfan anemia). The process of ribosome assembly comprises the processing and folding of the pre-rRNA and its concomitant assembly with the ribosomal proteins. Eukaryotic ribosome biogenesis relies on a large number (>200) of non-ribosomal factors, which confer directionality and accuracy to this process. Many of these non-ribosomal factors fall into different families of energy-consuming enzymes, notably including ATP-dependent RNA helicases, AAA-ATPases, GTPases, and kinases. Ribosome biogenesis is highly conserved within eukaryotic organisms; however, due to the combination of powerful genetic and biochemical methods, it is best studied in the yeast Saccharomyces cerevisiae. This review summarizes our current knowledge on eukaryotic ribosome assembly, with particular focus on the molecular role of the involved energy-consuming enzymes.
                Bookmark

                Author and article information

                Journal
                101186374
                31761
                Nat Struct Mol Biol
                Nat. Struct. Mol. Biol.
                Nature structural & molecular biology
                1545-9993
                1545-9985
                28 May 2013
                11 November 2012
                December 2012
                11 June 2013
                : 19
                : 12
                : 1234-1241
                Affiliations
                [1 ]Biochemistry Center, Universität Heidelberg, Heidelberg, Germany.
                [2 ]Department of Biochemistry, Gene Center and Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Munich, Germany.
                [3 ]Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, UK.
                [4 ]European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
                Author notes
                Correspondence should be addressed to E.H. ( ed.hurt@ 123456bzh.uni-heidelberg.de ).
                [5]

                Present addresses: Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK (S.G.); School of Biological Sciences, University of Edinburgh, Edinburgh, UK (B.Bö.).

                [6]

                These authors contributed equally to this work.

                AUTHOR CONTRIBUTIONS B.Br. designed and performed the experiments and wrote the manuscript; C.L. performed the cryo-EM analysis supervised by R.B.; S.G. performed the CRAC experiments and the computational analyses in the laboratory of D.T.; M.G. performed some of the biochemical purifications and growth analysis; B.Bö. mediated knowhow and supplied EM facility for the negative stain EM; E.H. directed the project, designed experiments, and wrote the manuscript; all authors contributed to the interpretation of the results and helped write the manuscript.

                Article
                EMS53247
                10.1038/nsmb.2438
                3678077
                23142978
                675119c7-c998-4564-b97d-5f1ff5c27660

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: Wellcome Trust :
                Award ID: 077248 || WT
                Categories
                Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article