3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multi-omics analysis uncovers clinical, immunological, and pharmacogenomic implications of cuproptosis in clear cell renal cell carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The latest research proposed a novel copper-dependent programmed cell death named cuproptosis. We aimed to elucidate the influence of cuproptosis in clear cell renal cell carcinoma (ccRCC) from a multi-omic perspective.

          Methods

          This study systematically assessed mRNA expression, methylation, and genetic alterations of cuproptosis genes in TCGA ccRCC samples. Through unsupervised clustering analysis, the samples were classified as different cuproptosis subtypes, which were verified through NTP method in the E-MTAB-1980 dataset. Next, the cuproptosis score (Cuscore) was computed based on cuproptosis-related genes via PCA. We also evaluated clinical and immunogenomic features, drug sensitivity, immunotherapeutic response, and post-transcriptional regulation.

          Results

          Cuproptosis genes presented multi-layer alterations in ccRCC, and were linked with patients’ survival and immune microenvironment. We defined three cuproptosis subtypes [C1 (moderate cuproptosis), C2 (low cuproptosis), and C3 (high cuproptosis)], and the robustness and reproducibility of this classification was further proven. Overall survival was best in C3, moderate in C1, and worst in C2. C1 had the highest sensitivity to pazopanib, and sorafenib, while C2 was most sensitive to sunitinib. Furthermore, C1 patients benefited more from anti-PD-1 immunotherapy. Patients with high Cuscore presented the notable survival advantage. Cuscore was highly linked with immunogenomic features, and post-transcriptional events that contributed to ccRCC development. Finally, several potential compounds and druggable targets (NMU, RARRES1) were selected for low Cuscore group.

          Conclusion

          Overall, our study revealed the non-negligible role of cuproptosis in ccRCC development. Evaluation of the cuproptosis subtypes improves our cognition of immunogenomic features and better guides personalized prognostication and precision therapy.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s40001-023-01221-4.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

          Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            limma powers differential expression analyses for RNA-sequencing and microarray studies

            limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              GSVA: gene set variation analysis for microarray and RNA-Seq data

              Background Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. Results To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. Conclusions GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.
                Bookmark

                Author and article information

                Contributors
                zhongweimin63@gmail.com
                Journal
                Eur J Med Res
                Eur J Med Res
                European Journal of Medical Research
                BioMed Central (London )
                0949-2321
                2047-783X
                22 July 2023
                22 July 2023
                2023
                : 28
                : 248
                Affiliations
                The Fifth Hospital of Xiamen, Xiamen, 361101 Fujian People’s Republic of China
                Article
                1221
                10.1186/s40001-023-01221-4
                10362584
                679e5550-035a-4ef1-9d11-924b5e3cdbc8
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 6 March 2023
                : 11 July 2023
                Funding
                Funded by: Fujian Provincial Science and Technology Plan Project
                Award ID: 2022D030
                Award ID: 2019D021
                Award ID: 2019D027
                Award ID: 2021D010
                Award Recipient :
                Funded by: Xiamen Medical and Health Guidance Project
                Award ID: 3502Z20214ZD1263
                Award Recipient :
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                Medicine
                cuproptosis,clear cell renal cell carcinoma,prognosis,immunogenomics,immunotherapy,precision therapy

                Comments

                Comment on this article