6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prevalence of right ventricular dysfunction and impact on all-cause death in hospitalized patients with COVID-19: a systematic review and meta-analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Coronavirus Disease (COVID-19) pandemic imposed a high burden of morbidity and mortality. In COVID-19, direct lung parenchymal involvement and pulmonary microcirculation dysfunction may entail pulmonary hypertension (PH). PH and direct cardiac injury beget right ventricular dysfunction (RVD) occurrence, which has been frequently reported in COVID-19 patients; however, the prevalence of RVD and its impact on outcomes during COVID-19 are still unclear. This study aims to evaluate the prevalence of RVD and associated outcomes in patients with COVID-19, through a Systematic Review and Meta-Analysis. MEDLINE and EMBASE were systematically searched from inception to 15th July 2021. All studies reporting either the prevalence of RVD in COVID-19 patients or all-cause death according to RVD status were included. The pooled prevalence of RVD and Odds Ratio (OR) for all-cause death according to RVD status were computed and reported. Subgroup analysis and meta-regression were also performed. Among 29 studies (3813 patients) included, pooled prevalence of RVD was 20.4% (95% CI 17.1–24.3%; 95% PI 7.8–43.9%), with a high grade of heterogeneity. No significant differences were found across geographical locations, or according to the risk of bias. Severity of COVID-19 was associated with increased prevalence of RVD at meta-regression. The presence of RVD was found associated with an increased likelihood of all-cause death (OR 3.32, 95% CI 1.94–5.70). RVD was found in 1 out of 5 COVID-19 patients, and was associated with all-cause mortality. RVD may represent one crucial marker for prognostic stratification in COVID-19; further prospective and larger are needed to investigate specific management and therapeutic approach for these patients.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Endothelial cell infection and endotheliitis in COVID-19

          Cardiovascular complications are rapidly emerging as a key threat in coronavirus disease 2019 (COVID-19) in addition to respiratory disease. The mechanisms underlying the disproportionate effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities, however, remain incompletely understood.1, 2 SARS-CoV-2 infects the host using the angiotensin converting enzyme 2 (ACE2) receptor, which is expressed in several organs, including the lung, heart, kidney, and intestine. ACE2 receptors are also expressed by endothelial cells. 3 Whether vascular derangements in COVID-19 are due to endothelial cell involvement by the virus is currently unknown. Intriguingly, SARS-CoV-2 can directly infect engineered human blood vessel organoids in vitro. 4 Here we demonstrate endothelial cell involvement across vascular beds of different organs in a series of patients with COVID-19 (further case details are provided in the appendix). Patient 1 was a male renal transplant recipient, aged 71 years, with coronary artery disease and arterial hypertension. The patient's condition deteriorated following COVID-19 diagnosis, and he required mechanical ventilation. Multisystem organ failure occurred, and the patient died on day 8. Post-mortem analysis of the transplanted kidney by electron microscopy revealed viral inclusion structures in endothelial cells (figure A, B ). In histological analyses, we found an accumulation of inflammatory cells associated with endothelium, as well as apoptotic bodies, in the heart, the small bowel (figure C) and lung (figure D). An accumulation of mononuclear cells was found in the lung, and most small lung vessels appeared congested. Figure Pathology of endothelial cell dysfunction in COVID-19 (A, B) Electron microscopy of kidney tissue shows viral inclusion bodies in a peritubular space and viral particles in endothelial cells of the glomerular capillary loops. Aggregates of viral particles (arrow) appear with dense circular surface and lucid centre. The asterisk in panel B marks peritubular space consistent with capillary containing viral particles. The inset in panel B shows the glomerular basement membrane with endothelial cell and a viral particle (arrow; about 150 nm in diameter). (C) Small bowel resection specimen of patient 3, stained with haematoxylin and eosin. Arrows point to dominant mononuclear cell infiltrates within the intima along the lumen of many vessels. The inset of panel C shows an immunohistochemical staining of caspase 3 in small bowel specimens from serial section of tissue described in panel D. Staining patterns were consistent with apoptosis of endothelial cells and mononuclear cells observed in the haematoxylin-eosin-stained sections, indicating that apoptosis is induced in a substantial proportion of these cells. (D) Post-mortem lung specimen stained with haematoxylin and eosin showed thickened lung septa, including a large arterial vessel with mononuclear and neutrophilic infiltration (arrow in upper inset). The lower inset shows an immunohistochemical staining of caspase 3 on the same lung specimen; these staining patterns were consistent with apoptosis of endothelial cells and mononuclear cells observed in the haematoxylin-eosin-stained sections. COVID-19=coronavirus disease 2019. Patient 2 was a woman, aged 58 years, with diabetes, arterial hypertension, and obesity. She developed progressive respiratory failure due to COVID-19 and subsequently developed multi-organ failure and needed renal replacement therapy. On day 16, mesenteric ischaemia prompted removal of necrotic small intestine. Circulatory failure occurred in the setting of right heart failure consequent to an ST-segment elevation myocardial infarction, and cardiac arrest resulted in death. Post-mortem histology revealed lymphocytic endotheliitis in lung, heart, kidney, and liver as well as liver cell necrosis. We found histological evidence of myocardial infarction but no sign of lymphocytic myocarditis. Histology of the small intestine showed endotheliitis (endothelialitis) of the submucosal vessels. Patient 3 was a man, aged 69 years, with hypertension who developed respiratory failure as a result of COVID-19 and required mechanical ventilation. Echocardiography showed reduced left ventricular ejection fraction. Circulatory collapse ensued with mesenteric ischaemia, and small intestine resection was performed, but the patient survived. Histology of the small intestine resection revealed prominent endotheliitis of the submucosal vessels and apoptotic bodies (figure C). We found evidence of direct viral infection of the endothelial cell and diffuse endothelial inflammation. Although the virus uses ACE2 receptor expressed by pneumocytes in the epithelial alveolar lining to infect the host, thereby causing lung injury, the ACE2 receptor is also widely expressed on endothelial cells, which traverse multiple organs. 3 Recruitment of immune cells, either by direct viral infection of the endothelium or immune-mediated, can result in widespread endothelial dysfunction associated with apoptosis (figure D). The vascular endothelium is an active paracrine, endocrine, and autocrine organ that is indispensable for the regulation of vascular tone and the maintenance of vascular homoeostasis. 5 Endothelial dysfunction is a principal determinant of microvascular dysfunction by shifting the vascular equilibrium towards more vasoconstriction with subsequent organ ischaemia, inflammation with associated tissue oedema, and a pro-coagulant state. 6 Our findings show the presence of viral elements within endothelial cells and an accumulation of inflammatory cells, with evidence of endothelial and inflammatory cell death. These findings suggest that SARS-CoV-2 infection facilitates the induction of endotheliitis in several organs as a direct consequence of viral involvement (as noted with presence of viral bodies) and of the host inflammatory response. In addition, induction of apoptosis and pyroptosis might have an important role in endothelial cell injury in patients with COVID-19. COVID-19-endotheliitis could explain the systemic impaired microcirculatory function in different vascular beds and their clinical sequelae in patients with COVID-19. This hypothesis provides a rationale for therapies to stabilise the endothelium while tackling viral replication, particularly with anti-inflammatory anti-cytokine drugs, ACE inhibitors, and statins.7, 8, 9, 10, 11 This strategy could be particularly relevant for vulnerable patients with pre-existing endothelial dysfunction, which is associated with male sex, smoking, hypertension, diabetes, obesity, and established cardiovascular disease, all of which are associated with adverse outcomes in COVID-19.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China

            Coronavirus disease 2019 (COVID-19) has resulted in considerable morbidity and mortality worldwide since December 2019. However, information on cardiac injury in patients affected by COVID-19 is limited.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Incidence of venous thromboembolism in hospitalized patients with COVID‐19

              Abstract Background Coronavirus disease 2019 (COVID‐19) can lead to systemic coagulation activation and thrombotic complications. Objectives To investigate the incidence of objectively confirmed venous thromboembolism (VTE) in hospitalized patients with COVID‐19. Methods Single‐center cohort study of 198 hospitalized patients with COVID‐19. Results Seventy‐five patients (38%) were admitted to the intensive care unit (ICU). At time of data collection, 16 (8%) were still hospitalized and 19% had died. During a median follow‐up of 7 days (IQR, 3‐13), 39 patients (20%) were diagnosed with VTE of whom 25 (13%) had symptomatic VTE, despite routine thrombosis prophylaxis. The cumulative incidences of VTE at 7, 14 and 21 days were 16% (95% CI, 10‐22), 33% (95% CI, 23‐43) and 42% (95% CI 30‐54) respectively. For symptomatic VTE, these were 10% (95% CI, 5.8‐16), 21% (95% CI, 14‐30) and 25% (95% CI 16‐36). VTE appeared to be associated with death (adjusted HR, 2.4; 95% CI, 1.02‐5.5). The cumulative incidence of VTE was higher in the ICU (26% (95% CI, 17‐37), 47% (95% CI, 34‐58), and 59% (95% CI, 42‐72) at 7, 14 and 21 days) than on the wards (any VTE and symptomatic VTE 5.8% (95% CI, 1.4‐15), 9.2% (95% CI, 2.6‐21), and 9.2% (2.6‐21) at 7, 14, and 21 days). Conclusions The observed risk for VTE in COVID‐19 is high, particularly in ICU patients, which should lead to a high level of clinical suspicion and low threshold for diagnostic imaging for DVT or PE. Future research should focus on optimal diagnostic and prophylactic strategies to prevent VTE and potentially improve survival.
                Bookmark

                Author and article information

                Contributors
                marco.proietti@unimi.it
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                7 September 2021
                7 September 2021
                2021
                : 11
                : 17774
                Affiliations
                [1 ]GRID grid.7841.a, Department of Translational and Precision Medicine, , Sapienza – University of Rome, ; Rome, Italy
                [2 ]GRID grid.4691.a, ISNI 0000 0001 0790 385X, Department of Translational Medical Sciences, , “Federico II” University of Naples, ; Naples, Italy
                [3 ]GRID grid.5253.1, ISNI 0000 0001 0328 4908, Center for Pulmonary Hypertension, , Thoraxklinik at Heidelberg University Hospital, ; Heidelberg, Germany
                [4 ]GRID grid.4708.b, ISNI 0000 0004 1757 2822, Department of Clinical Sciences and Community Health, , University of Milan, ; Milan, Italy
                [5 ]GRID grid.511455.1, Geriatric Unit, , IRCCS Istituti Clinici Scientifici Maugeri, ; Via Camaldoli 64, 20138 Milan, Italy
                [6 ]GRID grid.415992.2, ISNI 0000 0004 0398 7066, Liverpool Centre for Cardiovascular Science, , University of Liverpool and Liverpool Heart & Chest Hospital, ; Liverpool, UK
                Author information
                http://orcid.org/0000-0003-1452-2478
                Article
                96955
                10.1038/s41598-021-96955-8
                8423751
                34493763
                67f9a081-7047-4782-954d-67f06a2136b1
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 28 April 2021
                : 12 August 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                cardiology,cardiovascular diseases,heart failure,ultrasonography
                Uncategorized
                cardiology, cardiovascular diseases, heart failure, ultrasonography

                Comments

                Comment on this article