86
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IL-9–mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          IL-9 acts as an autocrine amplifier of type 2 innate lymphoid cell function to promote tissue repair in the recovery phase of helminth-induced lung infection.

          Abstract

          IL-9 fate reporter mice established type 2 innate lymphoid cells (ILC2s) as major producers of this cytokine in vivo. Here we focus on the role of IL-9 and ILC2s during the lung stage of infection with Nippostrongylus brasiliensis, which results in substantial tissue damage. IL-9 receptor (IL-9R)–deficient mice displayed reduced numbers of ILC2s in the lung after infection, resulting in impaired IL-5, IL-13, and amphiregulin levels, despite undiminished numbers of Th2 cells. As a consequence, the restoration of tissue integrity and lung function was strongly impaired in the absence of IL-9 signaling. ILC2s, in contrast to Th2 cells, expressed high levels of the IL-9R, and IL-9 signaling was crucial for the survival of activated ILC2s in vitro. Furthermore, ILC2s in the lungs of infected mice required the IL-9R to up-regulate the antiapoptotic protein BCL-3 in vivo. This highlights a unique role for IL-9 as an autocrine amplifier of ILC2 function, promoting tissue repair in the recovery phase after helminth-induced lung inflammation.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation.

          A defining feature of inflammation is the accumulation of innate immune cells in the tissue that are thought to be recruited from the blood. We reveal that a distinct process exists in which tissue macrophages undergo rapid in situ proliferation in order to increase population density. This inflammatory mechanism occurred during T helper 2 (T(H)2)-related pathologies under the control of the archetypal T(H)2 cytokine interleukin-4 (IL-4) and was a fundamental component of T(H)2 inflammation because exogenous IL-4 was sufficient to drive accumulation of tissue macrophages through self-renewal. Thus, expansion of innate cells necessary for pathogen control or wound repair can occur without recruitment of potentially tissue-destructive inflammatory cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161.

            Innate lymphoid cells (ILCs) are emerging as a family of effectors and regulators of innate immunity and tissue remodeling. Interleukin 22 (IL-22)- and IL-17-producing ILCs, which depend on the transcription factor RORγt, express CD127 (IL-7 receptor α-chain) and the natural killer cell marker CD161. Here we describe another lineage-negative CD127(+)CD161(+) ILC population found in humans that expressed the chemoattractant receptor CRTH2. These cells responded in vitro to IL-2 plus IL-25 and IL-33 by producing IL-13. CRTH2(+) ILCs were present in fetal and adult lung and gut. In fetal gut, these cells expressed IL-13 but not IL-17 or IL-22. There was enrichment for CRTH2(+) ILCs in nasal polyps of chronic rhinosinusitis, a typical type 2 inflammatory disease. Our data identify a unique type of human ILC that provides an innate source of T helper type 2 (T(H)2) cytokines.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus

                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                16 December 2013
                : 210
                : 13
                : 2951-2965
                Affiliations
                [1 ]Division of Molecular Immunology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
                [2 ]III. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
                [3 ]Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
                [4 ]de Duve Institute, Catholic University of Louvain and Ludwig Institute for Cancer Research, Brussels Branch, B-1200 Brussels, Belgium
                [5 ]London School of Hygiene and Tropical Medicine, London WC1E 7HT, England, UK
                Author notes
                CORRESPONDENCE Brigitta Stockinger: bstocki@ 123456nimr.mrc.ac.uk

                J.-E. Turner and P.J. Morrison contributed equally to this paper.

                Article
                20130071
                10.1084/jem.20130071
                3865473
                24249111
                680710ad-d139-4b71-a377-e08daf23c356
                © 2013 Turner et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 10 January 2013
                : 25 October 2013
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article