Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biocompatibility and Carcinogenicity of Carbon Nanotubes as Biomaterials

      review-article
      1 , 2 , *
      Nanomaterials
      MDPI
      carbon nanotubes, biocompatibility, carcinogenicity

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the development of nanotechnology in recent years, there have been concerns about the health effects of nanoparticles. Carbon nanotubes (CNTs) are fibrous nanoparticles with a micro-sized length and nano-sized diameter, which exhibit excellent physical properties and are widely studied for their potential application in medicine. However, asbestos has been historically shown to cause pleural malignant mesothelioma and lung cancer by inhalation exposure. Because carbon nanotubes are also fibrous nanotubes, some have raised concerns about its possible carcinogenicity. We have reported that there is no clear evidence of carcinogenicity by local and intravenous administration of multi-walled CNTs to cancer mice models. We firmly believe that CNTs can be a safe, new, and high-performance biomaterials by controlling its type, site of administration, and dosage.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma

          The unique hazard posed to the pleural mesothelium by asbestos has engendered concern in potential for a similar risk from high aspect ratio nanoparticles (HARN) such as carbon nanotubes. In the course of studying the potential impact of HARN on the pleura we have utilised the existing hypothesis regarding the role of the parietal pleura in the response to long fibres. This review seeks to synthesise our new data with multi-walled carbon nanotubes (CNT) with that hypothesis for the behaviour of long fibres in the lung and their retention in the parietal pleura leading to the initiation of inflammation and pleural pathology such as mesothelioma. We describe evidence that a fraction of all deposited particles reach the pleura and that a mechanism of particle clearance from the pleura exits, through stomata in the parietal pleura. We suggest that these stomata are the site of retention of long fibres which cannot negotiate them leading to inflammation and pleural pathology including mesothelioma. We cite thoracoscopic data to support the contention, as would be anticipated from the preceding, that the parietal pleura is the site of origin of pleural mesothelioma. This mechanism, if it finds support, has important implications for future research into the mesothelioma hazard from HARN and also for our current view of the origins of asbestos-initiated pleural mesothelioma and the common use of lung parenchymal asbestos fibre burden as a correlate of this tumour, which actually arises in the parietal pleura.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers.

            Carbon nanotubes (CNT) are intensively being developed for biomedical applications including drug and gene delivery. Although all possible clinical applications will require compatibility of CNT with the biological milieu, their in vivo capabilities and limitations have not yet been explored. In this work, water-soluble, single-walled CNT (SWNT) have been functionalized with the chelating molecule diethylentriaminepentaacetic (DTPA) and labeled with indium ((111)In) for imaging purposes. Intravenous (i.v.) administration of these functionalized SWNT (f-SWNT) followed by radioactivity tracing using gamma scintigraphy indicated that f-SWNT are not retained in any of the reticuloendothelial system organs (liver or spleen) and are rapidly cleared from systemic blood circulation through the renal excretion route. The observed rapid blood clearance and half-life (3 h) of f-SWNT has major implications for all potential clinical uses of CNT. Moreover, urine excretion studies using both f-SWNT and functionalized multiwalled CNT followed by electron microscopy analysis of urine samples revealed that both types of nanotubes were excreted as intact nanotubes. This work describes the pharmacokinetic parameters of i.v. administered functionalized CNT relevant for various therapeutic and diagnostic applications.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Mechanisms in the pathogenesis of asbestosis and silicosis.

                Bookmark

                Author and article information

                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                04 February 2020
                February 2020
                : 10
                : 2
                : 264
                Affiliations
                [1 ]Physical Therapy Division, School of Health Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; kin29men@ 123456shinshu-u.ac.jp
                [2 ]Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
                Author notes
                [* ]Correspondence: saitoko@ 123456shinshu-u.ac.jp ; Tel.: +81-263-37-2409
                Article
                nanomaterials-10-00264
                10.3390/nano10020264
                7075247
                32033249
                68cd9065-2129-4e40-87e2-c75b4564aede
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 January 2020
                : 31 January 2020
                Categories
                Review

                carbon nanotubes,biocompatibility,carcinogenicity
                carbon nanotubes, biocompatibility, carcinogenicity

                Comments

                Comment on this article