43
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The complete mitochondrial genome sequence of the little egret ( Egretta garzetta)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many phylogenetic questions in the Ciconiiformes remain unresolved and complete mitogenome data are urgently needed for further molecular investigation. In this work, we determined the complete mitogenome sequence of the little egret ( Egretta garzetta). The genome was 17,361 bp in length and the gene organization was typical of other avian mtDNA. In protein-coding genes (PCGs), a C insertion was found in ND3, and COIII and ND4 terminated with incomplete stop codons (T). tRNA-Val and tRNA-Ser (AGY) were unable to fold into canonical cloverleaf secondary structures because they had lost the DHU arms. Long repetitive sequences consisting of five types of tandem repeats were found at the 3′ end of Domain III in the control region. A phylogenetic analysis of 11 species of Ciconiiformes was done using complete mitogenome data and 12 PCGs. The tree topologies obtained with these two strategies were identical, which strongly confirmed the monophyly of Ardeidae, Threskiorothidae and Ciconiidae. The phylogenetic analysis also revealed that Egretta was more closely related to Ardea than to Nycticorax in the Ardeidae, and Platalea was more closely related to Threskiornis than to Nipponia in the Threskiornithidae. These findings contribute to our understanding of the phylogenetic relationships of Ciconiiformes based on complete mitogenome data.

          Related collections

          Most cited references155

          • Record: found
          • Abstract: found
          • Article: not found

          The mitochondrial genome: structure, transcription, translation and replication.

          J Taanman (1999)
          Mitochondria play a central role in cellular energy provision. The organelles contain their own genome with a modified genetic code. The mammalian mitochondrial genome is transmitted exclusively through the female germ line. The human mitochondrial DNA (mtDNA) is a double-stranded, circular molecule of 16569 bp and contains 37 genes coding for two rRNAs, 22 tRNAs and 13 polypeptides. The mtDNA-encoded polypeptides are all subunits of enzyme complexes of the oxidative phosphorylation system. Mitochondria are not self-supporting entities but rely heavily for their functions on imported nuclear gene products. The basic mechanisms of mitochondrial gene expression have been solved. Cis-acting mtDNA sequences have been characterised by sequence comparisons, mapping studies and mutation analysis both in vitro and in patients harbouring mtDNA mutations. Characterisation of trans-acting factors has proven more difficult but several key enzymes involved in mtDNA replication, transcription and protein synthesis have now been biochemically identified and some have been cloned. These studies revealed that, although some factors may have an additional function elsewhere in the cell, most are unique to mitochondria. It is expected that cell cultures of patients with mitochondrial diseases will increasingly be used to address fundamental questions about mtDNA expression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial genome variation and the origin of modern humans.

            The analysis of mitochondrial DNA (mtDNA) has been a potent tool in our understanding of human evolution, owing to characteristics such as high copy number, apparent lack of recombination, high substitution rate and maternal mode of inheritance. However, almost all studies of human evolution based on mtDNA sequencing have been confined to the control region, which constitutes less than 7% of the mitochondrial genome. These studies are complicated by the extreme variation in substitution rate between sites, and the consequence of parallel mutations causing difficulties in the estimation of genetic distance and making phylogenetic inferences questionable. Most comprehensive studies of the human mitochondrial molecule have been carried out through restriction-fragment length polymorphism analysis, providing data that are ill suited to estimations of mutation rate and therefore the timing of evolutionary events. Here, to improve the information obtained from the mitochondrial molecule for studies of human evolution, we describe the global mtDNA diversity in humans based on analyses of the complete mtDNA sequence of 53 humans of diverse origins. Our mtDNA data, in comparison with those of a parallel study of the Xq13.3 region in the same individuals, provide a concurrent view on human evolution with respect to the age of modern humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial DNA maintenance in vertebrates.

              The discovery that mutations in mitochondrial DNA (mtDNA) can be pathogenic in humans has increased interest in understanding mtDNA maintenance. The functional state of mtDNA requires a great number of factors for gene expression, DNA replication, and DNA repair. These processes are ultimately controlled by the cell nucleus, because the requisite proteins are all encoded by nuclear genes and imported into the mitochondrion. DNA replication and transcription are linked in vertebrate mitochondria because RNA transcripts initiated at the light-strand promoter are the primers for mtDNA replication at the heavy-strand origin. Study of this transcription-primed DNA replication mechanism has led to isolation of key factors involved in mtDNA replication and transcription and to elucidation of unique nucleic acid structures formed at this origin. Because features of a transcription-primed mechanism appear to be conserved in vertebrates, a general model for initiation of vertebrate heavy-strand DNA synthesis is proposed. In many organisms, mtDNA maintenance requires not only faithful mtDNA replication, but also mtDNA repair and recombination. The extent to which these latter two processes are involved in mtDNA maintenance in vertebrates is also appraised.
                Bookmark

                Author and article information

                Journal
                Genet Mol Biol
                Genet. Mol. Biol
                gmb
                Genetics and Molecular Biology
                Sociedade Brasileira de Genética
                1415-4757
                1678-4685
                May 2015
                01 May 2015
                : 38
                : 2
                : 162-172
                Affiliations
                [01] College of Life Sciences, Ludong University, Yantai, Shandong, P.R. China
                Author notes
                Send correspondence to Ling Huang. College of Life Sciences, Ludong University, 264025 Yantai, Shandong, China. E-mail: huangdl@ 123456126.com .
                Article
                10.1590/S1415-4757382220140203
                4530654
                69b761c1-b2d7-4bfd-b94c-6aa73c0ec297

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 04 July 2014
                : 02 December 2014
                Page count
                Figures: 3, Tables: 4, Equations: 0, References: 89, Pages: 11
                Funding
                Funded by: Natural Scientific Foundation of China
                Award ID: 31171189
                Award ID: 31371252
                Categories
                Animal Genetics

                Molecular biology
                egretta garzetta,mitochondrial genome,phylogenomics
                Molecular biology
                egretta garzetta, mitochondrial genome, phylogenomics

                Comments

                Comment on this article