36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies revealed strong evidence that branched-chain and aromatic amino acids (BCAAs and AAAs) are closely associated with the risk of developing type 2 diabetes in several Western countries. The aim of this study was to evaluate the potential role of BCAAs and AAAs in predicting the diabetes development in Chinese populations. The serum levels of valine, leucine, isoleucine, tyrosine, and phenylalanine were measured in a longitudinal and a cross sectional studies with a total of 429 Chinese participants at different stages of diabetes development, using an ultra-performance liquid chromatography triple quadruple mass spectrometry platform. The alterations of the five AAs in Chinese populations are well in accordance with previous reports. Early elevation of the five AAs and their combined score was closely associated with future development of diabetes, suggesting an important role of these metabolites as early markers of diabetes. On the other hand, the five AAs were not as good as existing clinical markers in differentiating diabetic patients from their healthy counterparts. Our findings verified the close correlation of BCAAs and AAAs with insulin resistance and future development of diabetes in Chinese populations and highlighted the predictive value of these markers for future development of diabetes.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans.

          Insulin resistance plays an important role in the pathophysiology of diabetes and is associated with obesity and other cardiovascular risk factors. The "gold standard" glucose clamp and minimal model analysis are two established methods for determining insulin sensitivity in vivo, but neither is easily implemented in large studies. Thus, it is of interest to develop a simple, accurate method for assessing insulin sensitivity that is useful for clinical investigations. We performed both hyperinsulinemic isoglycemic glucose clamp and insulin-modified frequently sampled iv glucose tolerance tests on 28 nonobese, 13 obese, and 15 type 2 diabetic subjects. We obtained correlations between indexes of insulin sensitivity from glucose clamp studies (SI(Clamp)) and minimal model analysis (SI(MM)) that were comparable to previous reports (r = 0.57). We performed a sensitivity analysis on our data and discovered that physiological steady state values [i.e. fasting insulin (I(0)) and glucose (G(0))] contain critical information about insulin sensitivity. We defined a quantitative insulin sensitivity check index (QUICKI = 1/[log(I(0)) + log(G(0))]) that has substantially better correlation with SI(Clamp) (r = 0.78) than the correlation we observed between SI(MM) and SI(Clamp). Moreover, we observed a comparable overall correlation between QUICKI and SI(Clamp) in a totally independent group of 21 obese and 14 nonobese subjects from another institution. We conclude that QUICKI is an index of insulin sensitivity obtained from a fasting blood sample that may be useful for clinical research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults.

            For prevention of obesity in Chinese population, it is necessary to define the optimal range of healthy weight and the appropriate cut-off points of BMI and waist circumference for Chinese adults. The Working Group on Obesity in China under the support of International Life Sciences Institute Focal point in China organized a meta-analysis on the relation between BMI, waist circumference and risk factors of related chronic diseases (e.g., high diabetes, diabetes mellitus, and lipoprotein disorders). 13 population studies in all met the criteria for enrollment, with data of 239,972 adults (20-70 year) surveyed in the 1990s. Data on waist circumference was available for 111,411 persons and data on serum lipids and glucose were available for more than 80,000. The study populations located in 21 provinces, municipalities and autonomous regions in mainland China as well as in Taiwan. Each enrolled study provided data according to a common protocol and uniform format. The Center for data management in Department of Epidemiology, Fu Wai Hospital was responsible for statistical analysis. The prevalence of hypertension, diabetes, dyslipidemia and clustering of risk factors all increased with increasing levels of BMI or waist circumference. BMI at 24 with best sensitivity and specificity for identification of the risk factors, was recommended as the cut-off point for overweight, BMI at 28 which may identify the risk factors with specificity around 90% was recommended as the cut-off point for obesity. Waist circumference beyond 85 cm for men and beyond 80 cm for women were recommended as the cut-off points for central obesity. Analysis of population attributable risk percent illustrated that reducing BMI to normal range ( or = 28) with drugs could prevent 15%-17% clustering of risk factors. The waist circumference controlled under 85 cm for men and under 80 cm for women, could prevent 47%-58% clustering of risk factors. According to these, a classification of overweight and obesity for Chinese adults is recommended.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States

              There is an epidemic of diabetes in Asia. Type 2 diabetes develops in East Asian patients at a lower mean body mass index (BMI) compared with those of European descent. At any given BMI, East Asians have a greater amount of body fat and a tendency to visceral adiposity. In Asian patients, diabetes develops at a younger age and is characterized by early β cell dysfunction in the setting of insulin resistance, with many requiring early insulin treatment. The increasing proportion of young-onset and childhood type 2 diabetes is posing a particular threat, with these patients being at increased risk of developing diabetic complications. East Asian patients with type 2 diabetes have a higher risk of developing renal complications than Europeans and, with regard to cardiovascular complications, a predisposition for developing strokes. In addition to cardiovascular–renal disease, cancer is emerging as the other main cause of mortality. While more research is needed to explain these interethnic differences, urgent and concerted actions are needed to raise awareness, facilitate early diagnosis, and encourage preventive strategies to combat these growing disease burdens.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                05 February 2016
                2016
                : 6
                : 20594
                Affiliations
                [1 ]Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital , Shanghai 200233, China
                [2 ]University of Hawaii Cancer Center , Honolulu, HI 96813, USA
                [3 ]Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital; Shanghai Diabetes Institute ; Shanghai, 200233, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep20594
                10.1038/srep20594
                4742847
                26846565
                69f9b5fd-9141-434c-8e21-53740d087931
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 08 October 2015
                : 07 January 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article