6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of machine learning algorithms in classification the flow units of the Kazhdumi reservoir in one of the oil fields in southwest of Iran

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          By determining the hydraulic flow units (HFUs) in the reservoir rock and examining the distribution of porosity and permeability variables, it is possible to identify areas with suitable reservoir quality. In conventional methods, HFUs are determined using core data. This is while considering the non-continuity of the core data along the well, there is a great uncertainty in generalizing their results to the entire depth of the reservoir. Therefore, using related wireline logs as continuous data and using artificial intelligence methods can be an acceptable alternative. In this study, first, the number of HFUs was determined using conventional methods including Winland R35, flow zone index, discrete rock type and k-means. After that, by using petrophysical logs and using machine learning algorithms including support vector machine (SVM), artificial neural network (ANN), LogitBoost (LB), random forest (RF), and logistic regression (LR), HFUs have been determined. The innovation of this article is the use of different intelligent methods in determining the HFUs and comparing these methods with each other in such a way that instead of using only two parameters of porosity and permeability, different data obtained from wireline logging are used. This increases the accuracy and speed of reaching the solution and is the main application of the methodology introduced in this study. Mentioned algorithms are compared with accuracy, and the results show that SVM, ANN, RF, LB, and LR with 90.46%, 88.12%, 91.87%, 94.84%, and 91.56% accuracy classified the HFUs respectively.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          What is a support vector machine?

          Support vector machines (SVMs) are becoming popular in a wide variety of biological applications. But, what exactly are SVMs and how do they work? And what are their most promising applications in the life sciences?
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A random forest guided tour

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors)

                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Petroleum Exploration and Production Technology
                J Petrol Explor Prod Technol
                2190-0558
                2190-0566
                June 2023
                March 17 2023
                June 2023
                : 13
                : 6
                : 1419-1434
                Article
                10.1007/s13202-023-01618-1
                6a0cacef-8d6e-4a5e-b791-7924a3618f72
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article