69
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria

      research-article
      1 , 1 ,
      BMC Complementary and Alternative Medicine
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The six organic solvent extracts of Artemisia nilagirica were screened for the potential antimicrobial activity against phytopathogens and clinically important standard reference bacterial strains.

          Methods

          The agar disk diffusion method was used to study the antibacterial activity of A. nilagirica extracts against 15 bacterial strains. The Minimum Inhibitory Concentration (MIC) of the plant extracts were tested using two fold agar dilution method at concentrations ranging from 32 to 512 μg/ml. The phytochemical screening of extracts was carried out for major phytochemical derivatives in A. nilagirica.

          Results

          All the extracts showed inhibitory activity for gram-positive and gram-negative bacteria except for Klebsiella pneumoniae, Enterococcus faecalis and Staphylococcus aureus. The hexane extract was found to be effective against all phytopathogens with low MIC of 32 μg/ml and the methanol extract exhibited a higher inhibition activity against Escherichia coli, Yersinia enterocolitica, Salmonella typhi, Enterobacter aerogenes, Proteus vulgaris, Pseudomonas aeruginosa (32 μg/ml), Bacillus subtilis (64 μg/ml) and Shigella flaxneri (128 μg/ml). The phytochemical screening of extracts answered for the major derivative of alkaloids, amino acids, flavonoids, phenol, quinines, tannins and terpenoids.

          Conclusion

          All the extracts showed antibacterial activity against the tested strains. Of all, methanol and hexane extracts showed high inhibition against clinical and phytopathogens, respectively. The results also indicate the presence of major phytochemical derivatives in the A. nilagirica extracts. Hence, the isolation and purification of therapeutic potential compounds from A. nilagirica could be used as an effective source against bacterial diseases in human and plants.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Antibacterial action of several tannins against Staphylococcus aureus.

          We examined the antibacterial action of several tannins on plasma coagulation by Staphylococcus aureus and the effect of conventional chemotherapy combined with tannic acid below the MIC. Coagulation was inhibited in plasma containing tannic acid (100 mg/L), gallic acid (5000 mg/L), ellagic acid (5000 mg/L), (-)-epicatechin (1500 mg/L), (-)-epicatechin gallate (500 mg/L) or (-)-epigallocatechin gallate (200 mg/L) after incubation for 24 h. All tannins inhibited coagulation at a concentration below the MIC. The MICs of oxacillin and cefdinir for S. aureus were reduced to < or = 0.06 mg/L in Mueller-Hinton agar plates with tannic acid (100 mg/L) at a concentration below the MIC. The antistaphylococcal activity of tannic acid was reduced in plates with 10% rabbit blood, but not in those with 10% rabbit plasma. Membranous structures formed in a culture medium containing equal proportions of plasma and tryptic soy broth after incubation for 24 h. The colony counts of S. aureus in membranous structures in the medium containing oxacillin (40 mg/L) and tannic acid (100 mg/L) were c. 10-fold lower than those in medium containing oxacillin (40 mg/L) alone (P < 0.01). Tannic acid merits further investigation as a possible adjuvant agent against S. aureus skin infections treated with beta-lactam antibiotics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils.

            The essential oil isolated from Turkish tarragon (Artemisia dracunculus) by hydrodistillation was analyzed by GC-MS. Thirty compounds representing 99.5% of total oil were identified. The predominant components in the oil were (Z)-anethole (81.0%), (Z)-beta-ocimene (6.5%), (E)-beta-ocimene (3.1%), limonene (3.1%), and methyleugenol (1.8%). The antibacterial and antifungal activities of the essential oils isolated from A. dracunculus, Artemisia absinthium, Artemisia santonicum, and Artemisia spicigera oils were also evaluated. In general, the oils exhibited potent antifungal activity at a wide spectrum on the growth of agricultural pathogenic fungi. Among the oils, the weakest antifungal activity was shown by the oil of A. dracunculus. In many cases, the oils of A. absinthium, A. santonicum, and A. spicigera completely inhibited the growth of some fungal species. As compared with antibacterial activities of all of tested oils, A. santonicum and A. spicigera oils showed antibacterial activities over a very wide spectrum. However, the essential oils tested showed lower inhibition zones than the inhibition zones of penicillin. In addition, antioxidant and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities of tarragon oil were determined, and weak antioxidant and DPPH radical scavenging activities were found in comparison to butylated hydroxytoluene.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish artemisia species.

              The compositions of essential oils isolated from the aerial parts of Artemisia absinthium, Artemisia santonicum, and Artemisia spicigera by hydrodistillation were analyzed by GC-MS, and a total of 204 components were identified. The major components of these essential oils were camphor (34.9-1.4%), 1,8-cineole (9.5-1.5%), chamazulene (17.8-nd%), nuciferol propionate (5.1-nd%), nuciferol butanoate (8.2-nd%), caryophyllene oxide (4.3-1.7%), borneol (5.1-0.6%), alpha-terpineol (4.1-1.6%), spathulenol (3.7-1.3%), cubenol (4.2-0.1%), beta-eudesmol (7.2-0.6%), and terpinen-4-ol (3.5-1.2%). The antifungal activities of these essential oils were tested against 11 plant fungi and were compared with that of a commercial antifungal reagent, benomyl. The results showed that all of the oils have potent inhibitory effects at very broad spectrum against all of the tested fungi. Pure camphor and 1,8-cineole, which are the major components of the oils, were also tested for antifungal activity against the same fungal species. Unlike essential oils, these pure compounds were able to show antifungal activity against only some of the fungal species. In addition, the antioxidant and DPPH radical scavenging activities of the essential oils, camphor, and 1,8-cineole were determined in vitro. All of the studied essential oils showed antioxidant activity, but camphor and 1,8-cineole did not.
                Bookmark

                Author and article information

                Journal
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central
                1472-6882
                2010
                29 January 2010
                : 10
                : 6
                Affiliations
                [1 ]Department of Bioinformatics, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
                Article
                1472-6882-10-6
                10.1186/1472-6882-10-6
                2830175
                20109237
                6a73ff6b-afdd-49c8-89c6-501ef77bd7f4
                Copyright ©2010 Ahameethunisa and Hopper; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 July 2009
                : 29 January 2010
                Categories
                Research article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article