21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural and histological characterization of oviductal magnum and lectin-binding patterns in G allus domesticus

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Although chicken oviduct is a useful model and target tissue for reproductive biology and transgenesis, little is known because of the highly specific hormonal regulation and the lack of fundamental researches, including lectin-binding activities and glycobiology. Because lectin is attached to secreted glycoproteins, we hypothesized that lectin could be bound to secretory egg-white proteins, and played a crucial role in the generation of egg-white protein in the oviduct. Hence, the purpose of this study was to investigate the structural, histological and lectin-binding characteristics of the chicken oviductal magnum from juvenile and adult hens.

          Methods

          The oviductal magnums from juvenile and adult hens were prepared for ultrastructural analysis, qRT-PCR and immunostaining. Immunohistochemistry of anti-ovalbumin, anti-ESR1 and anti-PGR, and mRNA expression of egg-white genes and steroid hormone receptor genes were evaluated. Lectin histochemical staining was also conducted in juvenile and adult oviductal magnum tissues.

          Results

          The ultrastructural analysis showed that ciliated cells were rarely developed on luminal surface in juvenile magnum, but not tubular gland cells. In adult magnum, two types of epithelium and three types of tubular gland cells were observed. qRT-PCR analysis showed that egg-white genes were highly expressed in adult oviduct compared with the juvenile. However, mRNA expressions of ESR1 and PGR were considerably higher in juvenile oviduct than adult ( P < 0.05). The immunohistochemical analysis showed that anti-ovalbumin antibody was detected in adult oviduct not in juvenile, unlikely anti-ESR1 and anti-PGR antibodies that were stained in both oviducts. In histological analysis, Toluidine blue was stained in juvenile and adult oviductal epithelia, and adult tubular glands located in the outer layer of oviductal magnum. In contrast, PAS was positive only in adult oviductal tubular gland. Lectins were selectively bound to oviductal epithelium, stroma, and tubular gland cells. Particularly, lectin-ConA and WGA were bound to electron-dense secretory granules in tubular gland.

          Conclusions

          The observation of ultrastructural analysis, mRNA expression, immunohistochemistry and lectin staining showed structural and physiological characterization of juvenile and adult oviductal magnum. Consequently, oviduct study could be helped to in vitro culture of chicken oviductal cells, to develop epithelial or tubular gland cell-specific markers, and to understand female reproductive biology and endocrinology.

          Related collections

          Most cited references 46

          • Record: found
          • Abstract: found
          • Article: not found

          Germline transmission of genetically modified primordial germ cells.

          Primordial germ cells (PGCs) are the precursors of sperm and eggs. In most animals, segregation of the germ line from the somatic lineages is one of the earliest events in development; in avian embryos, PGCs are first identified in an extra-embryonic region, the germinal crescent, after approximately 18 h of incubation. After 50-55 h of development, PGCs migrate to the gonad and subsequently produce functional sperm and oocytes. So far, cultures of PGCs that remain restricted to the germ line have not been reported in any species. Here we show that chicken PGCs can be isolated, cultured and genetically modified while maintaining their commitment to the germ line. Furthermore, we show that chicken PGCs can be induced in vitro to differentiate into embryonic germ cells that contribute to somatic tissues. Retention of the commitment of PGCs to the germ line after extended periods in culture and after genetic modification combined with their capacity to acquire somatic competence in vitro provides a new model for developmental biology. The utility of the model is enhanced by the accessibility of the avian embryo, which facilitates access to the earliest stages of development and supplies a facile route for the reintroduction of PGCs into the embryonic vasculature. In addition, these attributes create new opportunities to manipulate the genome of chickens for agricultural and pharmaceutical applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics.

            Immunoglobulins (IgG) are soluble serum glycoproteins in which the oligosaccharides play significant roles in the bioactivity and pharmacokinetics. Recombinant immuno-globulins (rIgG) produced in different host cells by recombinant DNA technology are becoming major therapeutic agents to treat life threatening diseases such as cancer. Since glycosylation is cell type specific, rIgGs produced in different host cells contain different patterns of oligosaccharides which could affect the biological functions. In order to determine the extent of this variation N-linked oligosaccharide structures present in the IgGs of different animal species were characterized. IgGs of human, rhesus, dog, cow, guinea pig, sheep, goat, horse, rat, mouse, rabbit, cat, and chicken were treated with peptide-N-glycosidase-F (PNGase F) and the oligosaccharides analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for neutral and acidic oligosaccharides, in positive and negative ion modes, respectively. The data show that for neutral oligosaccharides, the proportions of terminal Gal, core Fuc and/or bisecting GlcNAc containing oligosaccharides vary from species to species; for sialylated oligosaccharides in the negative mode MALDI-TOF-MS show that human and chicken IgG contain oligosaccharides with N-acetylneuraminic acid (NANA), whereas rhesus, cow, sheep, goat, horse, and mouse IgGs contain oligosaccharides with N-glycolylneuraminic acid (NGNA). In contrast, IgGs from dog, guinea pig, rat, and rabbit contain both NANA and NGNA. Further, the PNGase F released oligosaccharides were derivatized with 9-aminopyrene 1,4,6-trisulfonic acid (APTS) and analyzed by capillary electrophoresis with laser induced fluorescence detection (CE-LIF). The CE-LIF results indicate that the proportion of the two isomers of monogalactosylated, biantennary, complex oligosaccharides vary significantly, suggesting that the branch specificity of beta1, 4-galactosyltransferase might be different in different species. These results show that the glycosylation of IgGs is species-specific, and reveal the necessity for appropriate cell line selection to express rIgGs for human therapy. The results of this study are useful for people working in the transgenic area.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Production of human monoclonal antibody in eggs of chimeric chickens.

              The tubular gland of the chicken oviduct is an attractive system for protein expression as large quantities of proteins are deposited in the egg, the production of eggs is easily scalable and good manufacturing practices for therapeutics from eggs have been established. Here we examined the ability of upstream and downstream DNA sequences of ovalbumin, a protein produced exclusively in very high quantities in chicken egg white, to drive tissue-specific expression of human mAb in chicken eggs. To accommodate these large regulatory regions, we established and transfected lines of chicken embryonic stem (cES) cells and formed chimeras that express mAb from cES cell-derived tubular gland cells. Eggs from high-grade chimeras contained up to 3 mg of mAb that possesses enhanced antibody-dependent cellular cytotoxicity (ADCC), nonantigenic glycosylation, acceptable half-life, excellent antigen recognition and good rates of internalization.
                Bookmark

                Author and article information

                Journal
                Reprod Biol Endocrinol
                Reproductive Biology and Endocrinology : RB&E
                BioMed Central
                1477-7827
                2011
                8 May 2011
                : 9
                : 62
                Affiliations
                [1 ]Avicore Biotechnology Institute, Optifarm Solution Inc., Gyeonggi-Do 435-050, Korea
                [2 ]WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, Korea
                Article
                1477-7827-9-62
                10.1186/1477-7827-9-62
                3114719
                21548987
                Copyright ©2011 Jung et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research

                Human biology

                Comments

                Comment on this article