Blog
About

468
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Planetary boundaries: Guiding human development on a changing planet

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.

          Related collections

          Most cited references 70

          • Record: found
          • Abstract: not found
          • Article: not found

          The Natural Flow Regime

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A reconciled estimate of ice-sheet mass balance.

            We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods--especially in Greenland and West Antarctica--and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 ± 49, +14 ± 43, -65 ± 26, and -20 ± 14 gigatonnes year(-1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year(-1) to the rate of global sea-level rise.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Estimating historical changes in global land cover: Croplands from 1700 to 1992

                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                February 12 2015
                February 13 2015
                January 15 2015
                February 13 2015
                : 347
                : 6223
                : 1259855
                Article
                10.1126/science.1259855
                25592418
                © 2015

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                Comments

                Comment on this article