7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A combined convolutional and recurrent neural network for enhanced glaucoma detection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glaucoma, a leading cause of blindness, is a multifaceted disease with several patho-physiological features manifesting in single fundus images (e.g., optic nerve cupping) as well as fundus videos (e.g., vascular pulsatility index). Current convolutional neural networks (CNNs) developed to detect glaucoma are all based on spatial features embedded in an image. We developed a combined CNN and recurrent neural network (RNN) that not only extracts the spatial features in a fundus image but also the temporal features embedded in a fundus video (i.e., sequential images). A total of 1810 fundus images and 295 fundus videos were used to train a CNN and a combined CNN and Long Short-Term Memory RNN. The combined CNN/RNN model reached an average F-measure of 96.2% in separating glaucoma from healthy eyes. In contrast, the base CNN model reached an average F-measure of only 79.2%. This proof-of-concept study demonstrates that extracting spatial and temporal features from fundus videos using a combined CNN and RNN, can markedly enhance the accuracy of glaucoma detection.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A survey on deep learning in medical image analysis

            Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Clinically applicable deep learning for diagnosis and referral in retinal disease

                Bookmark

                Author and article information

                Contributors
                soheila.gheisari@uts.edu.au
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                21 January 2021
                21 January 2021
                2021
                : 11
                : 1945
                Affiliations
                [1 ]GRID grid.117476.2, ISNI 0000 0004 1936 7611, Vision Science Group, Graduate School of Health, , University of Technology Sydney, ; Sydney, Australia
                [2 ]GRID grid.1005.4, ISNI 0000 0004 4902 0432, Centre for Eye Health, School of Optometry and Vision Science, , University of New South Wales, ; Sydney, Australia
                [3 ]GRID grid.117476.2, ISNI 0000 0004 1936 7611, Center for Artificial Intelligence, Faculty of Engineering and Information Technology, , University of Technology Sydney, ; Sydney, Australia
                [4 ]GRID grid.415193.b, Department of Ophthalmology, , Prince of Wales Hospital, ; Sydney, Australia
                [5 ]GRID grid.1005.4, ISNI 0000 0004 4902 0432, School of Optometry and Vision Science, , University of New South Wales, ; Sydney, Australia
                Article
                81554
                10.1038/s41598-021-81554-4
                7820237
                33479405
                6e6fd09d-79f3-45d0-9d99-ca88f3c914f7
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 June 2020
                : 5 January 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                eye diseases,diseases
                Uncategorized
                eye diseases, diseases

                Comments

                Comment on this article