21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Programming of neurotoxic cofactor CXCL-10 in HIV-1-associated dementia: abrogation of CXCL-10-induced neuro-glial toxicity in vitro by PKC activator

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          More than 50% of patients undergoing lifelong suppressive antiviral treatment for HIV-1 infection develop minor HIV-1-associated neurocognitive disorders. Neurological complications during HIV-1 infection are the result of direct neuronal damage by proinflammatory products released from HIV-1-infected or -uninfected activated lymphocytes, monocytes, macrophages, microglia and astrocytes. The specific pro-inflammatory products and their roles in neurotoxicity are far from clear. We investigated proinflammatory cytokines and chemokines in the cerebrospinal fluid (CSF) of HIV-demented (HIV-D) and HIV-nondemented (HIV-ND) patients and studied their affect on neuroglial toxicity.

          Methods and results

          Bioplex array showed elevated levels of signatory chemokines or cytokines (IL-6, IFN-γ, CXCL10, MCP-1 and PDGF) in the CSF of HIV-D patients (n = 7) but not in that of HIV-ND patients (n = 7). Among the signatory cytokines and chemokines, CXCL10 was distinctly upregulated in-vitro in HIV-1 (NLENG1)-activated human fetal astrocytes, HIV-1 (Ba-L)-infected macrophages, and HIV-1 (NLENG1)-infected lymphocytes. Virus-infected macrophages also had increased levels of TNF-α. Consistently, human fetal astrocytes treated with HIV-1 and TNF-α induced the signatory molecules. CXCL10 in combination with HIV-1 synergistically enhanced neuronal toxicity and showed chemotactic activity (~ 40 fold) for activated peripheral blood mononuclear cells (PBMC), suggesting the intersection of signaling events imparted by HIV-1 and CXCL10 after binding to their respective surface receptors, CXCR4 and CXCR3, on neurons. Blocking CXCR3 and its downstream MAP kinase (MAPK) signaling pathway suppressed combined CXCL10 and HIV-1-induced neurotoxicity. Bryostatin, a PKC modulator and suppressor of CXCR4, conferred neuroprotection against combined insult with HIV-1 and CXCL10. Bryostatin also suppressed HIV-1 and CXCL10-induced PBMC chemotaxis. Although, therapeutic targeting of chemokines in brain may have adverse consequences on the host, current findings and earlier evidence suggest that CXCL10 could strongly impede neuroinflammation.

          Conclusion

          We have demonstrated induction of CXCL10 and other chemokines/cytokines during HIV-1 infection in the brain, as well as synergism of CXCL10 with HIV-1 in neuronal toxicity, which was dampened by bryostatin.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes

          A human receptor that is selective for the CXC chemokines IP10 and Mig was cloned and characterized. The receptor cDNA has an open reading frame of 1104-bp encoding a protein of 368 amino acids with a molecular mass of 40,659 dalton. The sequence includes seven putative transmembrane segments characteristic of G-protein coupled receptors. It shares 40.9 and 40.3% identical amino acids with the two IL-8 receptors, and 34.2-36.9% identity with the five known CC chemokine receptors. The IP10/Mig receptor is highly expressed in IL-2-activated T lymphocytes, but is not detectable in resting T lymphocytes. B lymphocytes, monocytes and granulocytes. It mediates Ca2+ mobilization and chemotaxis in response to IP10 and Mig, but does not recognize the CXC-chemokines IL-8, GRO alpha, NAP-2, GCP-2. ENA78, PF4, the CC- chemokines MCP-1, MCP-2, MCP-3, MCP-4, MIP-1 alpha, MIP-1 beta. RANTES, 1309, eotaxin, nor lymphotactin. The exclusive expression in activated T-lymphocytes is of high interest since the receptors for chemokines which have been shown so far to attract lymphocytes, e.g., MCP-1, MCP- 2, MCP-3, MIP-1 alpha, MIP-1 beta, and RANTES, are also found in monocytes and granulocytes. The present observations suggest that the IP10/Mig receptor is involved in the selective recruitment of effector T cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF.

            Tumor necrosis factor (TNF) is a monocyte-derived cytotoxin that has been implicated in tumor regression, septic shock, and cachexia. The mechanism by which TNF induces these different disease states is unclear. We have identified and characterized a novel, rapidly inducible cell surface cytotoxic integral transmembrane form of TNF. The existence and behavior of this novel form of TNF may explain the complex physiology of this molecule. We suggest that activated monocytes synthesize transmembrane TNF at the site of inflammation and kill their targets by either cell-to-cell contact or local release of the TNF secretory component. In contrast, septic shock and cachexia may result from either acute or chronic systemic activation of monocytes, resulting in the widespread release of TNF secretory component into the circulation of the affected individual. We further suggest that cell borne cytokines and cytotoxins may be the primary mediators of directed inflammatory responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells

              The human cytokine interferon-inducible protein 10 (IP-10) is a small glycoprotein secreted by activated T cells, monocytes, endothelial cells, and keratinocytes, and is structurally related to a family of chemotactic cytokines called chemokines. Although this protein is present in sites of delayed-type hypersensitivity reactions and lepromatous leprosy lesions, the biological activity of IP-10 remains unknown. We report here that recombinant human IP-10 stimulated significant in vitro chemotaxis of human peripheral blood monocytes but not neutrophils. Recombinant human IP-10 also stimulated chemotaxis of stimulated, but not unstimulated, human peripheral blood T lymphocytes. Phenotypic analysis of the stimulated T cell population responsive to IP-10 demonstrated that stimulated CD4+ and CD29+ T cells migrated in response to IP-10. This resembles the biological activity of the previously described T cell chemoattractant RANTES. Using an endothelial cell adhesion assay, we demonstrated that stimulated T cells pretreated with optimal doses of IP-10 exhibited a greatly enhanced ability to bind to an interleukin 1-treated endothelial cell monolayer. These results demonstrate that the IP-10 gene encodes for an inflammatory mediator that specifically stimulates the directional migration of T cells and monocytes as well as potentiates T cell adhesion to endothelium.
                Bookmark

                Author and article information

                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central
                1742-2094
                2012
                18 October 2012
                : 9
                : 239
                Affiliations
                [1 ]Department of Pathology, Microbiology & Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, USA
                [2 ]Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, 29209, USA
                Article
                1742-2094-9-239
                10.1186/1742-2094-9-239
                3533742
                23078780
                6e847f3f-29fc-465f-b7c8-0a6bc384bd03
                Copyright ©2012 Mehla et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 February 2012
                : 8 October 2012
                Categories
                Research

                Neurosciences
                cxcr4/cxcr3,tnf-α,cytokines,chemokines,bryostatin,chemotaxis
                Neurosciences
                cxcr4/cxcr3, tnf-α, cytokines, chemokines, bryostatin, chemotaxis

                Comments

                Comment on this article