7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Narrative review of ferroptosis in obesity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Obesity is widely recognized as a major global health problem caused by a chronic energy imbalance resulting from a combination of excess caloric intake and insufficient energy expenditure. Excessive energy intake and physical inactivity are traditional risk factors for obesity. Obesity is a risk factor for many diseases, including hypertension, diabetes and tumours. Recent studies have found a strong link between ferroptosis and obesity. Ferroptosis is an iron‐dependent regulated cell death caused by iron overload and reactive oxygen species‐dependent excessive accumulation of lipid peroxidation. Ferroptosis is involved in many biological processes, such as amino acid metabolism, iron metabolism and lipid metabolism. Some potential strategies to reduce the adverse effects of ferroptosis on obesity are suggested and future research priorities are highlighted.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: an iron-dependent form of nonapoptotic cell death.

          Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults

            Summary Background Underweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults. Methods We pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5–19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5–19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity). Findings Regional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (−0·01 kg/m2 per decade; 95% credible interval −0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m2 per decade (0·69–1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m2 per decade (0·64–1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m2 per decade (−0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m2 per decade (0·50–1·06, PP>0·9999) in Polynesia and Micronesia. Trends in mean BMI have recently flattened in northwestern Europe and the high-income English-speaking and Asia-Pacific regions for both sexes, southwestern Europe for boys, and central and Andean Latin America for girls. By contrast, the rise in BMI has accelerated in east and south Asia for both sexes, and southeast Asia for boys. Global age-standardised prevalence of obesity increased from 0·7% (0·4–1·2) in 1975 to 5·6% (4·8–6·5) in 2016 in girls, and from 0·9% (0·5–1·3) in 1975 to 7·8% (6·7–9·1) in 2016 in boys; the prevalence of moderate and severe underweight decreased from 9·2% (6·0–12·9) in 1975 to 8·4% (6·8–10·1) in 2016 in girls and from 14·8% (10·4–19·5) in 1975 to 12·4% (10·3–14·5) in 2016 in boys. Prevalence of moderate and severe underweight was highest in India, at 22·7% (16·7–29·6) among girls and 30·7% (23·5–38·0) among boys. Prevalence of obesity was more than 30% in girls in Nauru, the Cook Islands, and Palau; and boys in the Cook Islands, Nauru, Palau, Niue, and American Samoa in 2016. Prevalence of obesity was about 20% or more in several countries in Polynesia and Micronesia, the Middle East and north Africa, the Caribbean, and the USA. In 2016, 75 (44–117) million girls and 117 (70–178) million boys worldwide were moderately or severely underweight. In the same year, 50 (24–89) million girls and 74 (39–125) million boys worldwide were obese. Interpretation The rising trends in children's and adolescents' BMI have plateaued in many high-income countries, albeit at high levels, but have accelerated in parts of Asia, with trends no longer correlated with those of adults. Funding Wellcome Trust, AstraZeneca Young Health Programme.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The CoQ oxidoreductase FSP1 acts in parallel to GPX4 to inhibit ferroptosis

              Ferroptosis is a form of regulated cell death that is caused by the iron-dependent peroxidation of lipids 1,2 . The glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4) prevents ferroptosis by converting lipid hydroperoxides into non-toxic lipid alcohols 3,4 . Ferroptosis has been implicated in the cell death that underlies several degenerative conditions 2 , and induction of ferroptosis by inhibition of GPX4 has emerged as a therapeutic strategy to trigger cancer cell death 5 . However, sensitivity to GPX4 inhibitors varies greatly across cancer cell lines 6 , suggesting that additional factors govern resistance to ferroptosis. Here, employing a synthetic lethal CRISPR/Cas9 screen, we identify ferroptosis suppressor protein 1 (FSP1) (previously known as apoptosis-inducing factor mitochondrial 2 (AIFM2)) as a potent ferroptosis resistance factor. Our data indicate that myristoylation recruits FSP1 to the plasma membrane where it functions as an oxidoreductase that reduces coenzyme Q10 (CoQ), generating a lipophilic radical-trapping antioxidant (RTA) that halts the propagation of lipid peroxides. We further find that FSP1 expression positively correlates with ferroptosis resistance across hundreds of cancer cell lines, and that FSP1 mediates resistance to ferroptosis in lung cancer cells in culture and in mouse tumor xenografts. Thus, our data identify FSP1 as a key component of a non-mitochondrial CoQ antioxidant system that acts in parallel to the canonical glutathione-based GPX4 pathway. These findings define a new ferroptosis suppression pathway and indicate that pharmacological inhibition of FSP1 may provide an effective strategy to sensitize cancer cells to ferroptosis-inducing chemotherapeutics.
                Bookmark

                Author and article information

                Contributors
                lianpinghe@tzc.edu.cn
                Journal
                J Cell Mol Med
                J Cell Mol Med
                10.1111/(ISSN)1582-4934
                JCMM
                Journal of Cellular and Molecular Medicine
                John Wiley and Sons Inc. (Hoboken )
                1582-1838
                1582-4934
                05 March 2023
                April 2023
                : 27
                : 7 ( doiID: 10.1111/jcmm.v27.7 )
                : 920-926
                Affiliations
                [ 1 ] School of Medicine Taizhou University Zhejiang China
                Author notes
                [*] [* ] Correspondence

                Lian‐Ping He, School of Medicine, Taizhou University, No. 1139, Shifu Avenue, Jiaojiang, 318000 Zhejiang, China.

                Email: lianpinghe@ 123456tzc.edu.cn

                Author information
                https://orcid.org/0000-0002-9627-5599
                https://orcid.org/0000-0001-8943-0936
                https://orcid.org/0000-0002-9410-1835
                Article
                JCMM17701 JCMM-02-2021-087.R2
                10.1111/jcmm.17701
                10064023
                36871273
                6ec33e2b-1cb3-406e-936b-da0954f1a4c1
                © 2023 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 February 2023
                : 06 January 2023
                : 18 February 2023
                Page count
                Figures: 4, Tables: 0, Pages: 7, Words: 4156
                Funding
                Funded by: innovation and entrepreneurship training program for college students
                Award ID: S202210350181
                Funded by: 2022 Taizhou University Higher Education Teaching Reform Project
                Award ID: 105
                Award ID: 114
                Categories
                Review
                Reviews
                Custom metadata
                2.0
                April 2023
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.2.7 mode:remove_FC converted:31.03.2023

                Molecular medicine
                ferroptosis,iron metabolism,obesity,review
                Molecular medicine
                ferroptosis, iron metabolism, obesity, review

                Comments

                Comment on this article