2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      T lymphocytes in IgA nephropathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunoglobulin A nephropathy (IgAN), the most common primary glomerulonephritis worldwide, is the main cause of end-stage renal disease. IgAN is characterized by the accumulation of immune complexes in the circulation, which contain abnormal levels of IgA. IgAN primarily results from galactose-deficient IgA1 (Gd-IgA1) and Gd-IgA1 deposition in the renal mesangium, causing local proliferation and matrix expansion. Gd-IgA1 has been confirmed as one of the key effectors in the pathogenesis of IgAN, but the origin of Gd-IgA1 is not clear. Recent studies have shown that Gd-IgA1 deposition could be the result of mucosally primed plasma cells and is associated with T cell dysregulation. T cells contribute to the IgA response and play an important role in the development of IgAN. In the present review, the latest discoveries regarding the role of T lymphocytes in the pathogenesis of IgAN have been summarized. Understanding these advances will allow novel therapeutic strategies for the treatment of IgAN.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity.

          IgA nephropathy (IgAN) is characterized by circulating immune complexes composed of galactose-deficient IgA1 and a glycan-specific IgG antibody. These immune complexes deposit in the glomerular mesangium and induce the mesangioproliferative glomerulonephritis characteristic of IgAN. To define the precise specificities and molecular properties of the IgG antibodies, we generated EBV-immortalized IgG-secreting lymphocytes from patients with IgAN and found that the secreted IgG formed complexes with galactose-deficient IgA1 in a glycan-dependent manner. We cloned and sequenced the heavy- and light-chain antigen-binding domains of IgG specific for galactose-deficient IgA1 and identified an A to S substitution in the complementarity-determining region 3 of the variable region of the gene encoding the IgG heavy chain in IgAN patients. Furthermore, site-directed mutagenesis that reverted the residue to alanine reduced the binding of recombinant IgG to galactose-deficient IgA1. Finally, we developed a dot-blot assay for the glycan-specific IgG antibody that differentiated patients with IgAN from healthy and disease controls with 88% specificity and 95% sensitivity and found that elevated levels of this antibody in the sera of patients with IgAN correlated with proteinuria. Collectively, these findings indicate that glycan-specific antibodies are associated with the development of IgAN and may represent a disease-specific marker and potential therapeutic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy.

            Aberrant O-glycosylation in the hinge region of IgA1 characterizes IgA nephropathy. The mechanisms underlying this abnormal glycosylation are not well understood, but reduced expression of the enzyme core 1, β1,3-galactosyltransferase 1 (C1GALT1) may contribute. In this study, high-throughput microRNA (miRNA) profiling identified 37 miRNAs differentially expressed in PBMCs of patients with IgA nephropathy compared with healthy persons. Among them, we observed upregulation of miR-148b, which potentially targets C1GALT1. Patients with IgA nephropathy exhibited lower C1GALT1 expression, which negatively correlated with miR-148b expression. Transfection of PBMCs from healthy persons with a miR-148b mimic reduced endogenous C1GALT1 mRNA levels threefold. Conversely, loss of miR-148b function in PBMCs of patients with IgA nephropathy increased C1GALT1 mRNA and protein levels to those observed in healthy persons. Moreover, we found that upregulation of miR-148b directly correlated with levels of galactose-deficient IgA1. In vitro, we used an IgA1-producing cell line to confirm that miR-148b modulates IgA1 O-glycosylation and the levels of secreted galactose-deficient IgA1. Taken together, these data suggest a role for miRNAs in the pathogenesis of IgA nephropathy. Abnormal expression of miR-148b may explain the aberrant glycosylation of IgA1, providing a potential pharmacologic target for IgA nephropathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Th17 Response and Inflammatory Autoimmune Diseases

              The proinflammatory activity of T helper 17 (Th17) cells can be beneficial to the host during infection. However, uncontrolled or inappropriate Th17 activation has been linked to several autoimmune and autoinflammatory pathologies. Indeed, preclinical and clinical data show that Th17 cells are associated with several autoimmune diseases such as arthritis, multiple sclerosis, psoriasis, and lupus. Furthermore, targeting the interleukin-17 (IL-17) pathway has attenuated disease severity in preclinical models of autoimmune diseases. Interestingly, a recent report brings to light a potential role for Th17 cells in the autoinflammatory disorder adult-onset Still's disease (AOSD). Whether Th17 cells are the cause or are directly involved in AOSD remains to be shown. In this paper, we discuss the biology of Th17 cells, their role in autoimmune disease development, and in AOSD in particular, as well as the growing interest of the pharmaceutical industry in their use as therapeutic targets.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                July 2020
                22 April 2020
                22 April 2020
                : 20
                : 1
                : 186-194
                Affiliations
                Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
                Author notes
                Correspondence to: Dr Xudong Xu or Dr Yuyan Tang, Department of Nephrology, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai 201199, P.R. China xxdmzx@ 123456sina.com tangyuyan361113248@ 123456163.com
                Article
                ETM-0-0-8673
                10.3892/etm.2020.8673
                7271719
                6f74636a-c8f6-4742-b4ad-4691319e31e5
                Copyright: © Tang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 19 September 2019
                : 19 March 2020
                Categories
                Review

                Medicine
                iga nephropathy,pathogenesis,galactose-deficient iga1,t lymphocyte,b lymphocyte
                Medicine
                iga nephropathy, pathogenesis, galactose-deficient iga1, t lymphocyte, b lymphocyte

                Comments

                Comment on this article