32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SIRT5-Related Desuccinylation Modification Contributes to Quercetin-Induced Protection against Heart Failure and High-Glucose-Prompted Cardiomyocytes Injured through Regulation of Mitochondrial Quality Surveillance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myocardial fibrosis represents the primary pathological change associated with diabetic cardiomyopathy and heart failure, and it leads to decreased myocardial compliance with impaired cardiac diastolic and systolic function. Quercetin, an active ingredient in various medicinal plants, exerts therapeutic effects against cardiovascular diseases. Here, we investigate whether SIRT5- and IDH2-related desuccinylation is involved in the underlying mechanism of myocardial fibrosis in heart failure while exploring related therapeutic drugs for mitochondrial quality surveillance. Mouse models of myocardial fibrosis and heart failure, established by transverse aortic constriction (TAC), were administered with quercetin (50 mg/kg) daily for 4 weeks. HL-1 cells were pretreated with quercetin and treated with high glucose (30 mM) in vitro. Cardiac function, western blotting, quantitative PCR, enzyme-linked immunosorbent assay, and immunofluorescence analysis were employed to analyze mitochondrial quality surveillance, oxidative stress, and inflammatory response in myocardial cells, whereas IDH2 succinylation levels were detected using immunoprecipitation. Myocardial fibrosis and heart failure incidence increased after TAC, with abnormal cardiac ejection function. Following high-glucose treatment, HL-1 cell activity was inhibited, causing excess production of reactive oxygen species and inhibition of mitochondrial respiratory complex I/III activity and mitochondrial antioxidant enzyme activity, as well as increased oxidative stress and inflammatory response, imbalanced mitochondrial quality surveillance and homeostasis, and increased apoptosis. Quercetin inhibited myocardial fibrosis and improved cardiac function by increasing mitochondrial energy metabolism and regulating mitochondrial fusion/fission and mitochondrial biosynthesis while inhibiting the inflammatory response and oxidative stress injury. Additionally, TAC inhibited SIRT5 expression at the mitochondrial level and increased IDH2 succinylation. However, quercetin promoted the desuccinylation of IDH2 by increasing SIRT5 expression. Moreover, treatment with si-SIRT5 abolished the protective effect of quercetin on cell viability. Hence, quercetin may promote the desuccinylation of IDH2 through SIRT5, maintain mitochondrial homeostasis, protect mouse cardiomyocytes under inflammatory conditions, and improve myocardial fibrosis, thereby reducing the incidence of heart failure.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation.

          Over the past decade, myocardial structure, cardiomyocyte function, and intramyocardial signaling were shown to be specifically altered in heart failure with preserved ejection fraction (HFPEF). A new paradigm for HFPEF development is therefore proposed, which identifies a systemic proinflammatory state induced by comorbidities as the cause of myocardial structural and functional alterations. The new paradigm presumes the following sequence of events in HFPEF: 1) a high prevalence of comorbidities such as overweight/obesity, diabetes mellitus, chronic obstructive pulmonary disease, and salt-sensitive hypertension induce a systemic proinflammatory state; 2) a systemic proinflammatory state causes coronary microvascular endothelial inflammation; 3) coronary microvascular endothelial inflammation reduces nitric oxide bioavailability, cyclic guanosine monophosphate content, and protein kinase G (PKG) activity in adjacent cardiomyocytes; 4) low PKG activity favors hypertrophy development and increases resting tension because of hypophosphorylation of titin; and 5) both stiff cardiomyocytes and interstitial fibrosis contribute to high diastolic left ventricular (LV) stiffness and heart failure development. The new HFPEF paradigm shifts emphasis from LV afterload excess to coronary microvascular inflammation. This shift is supported by a favorable Laplace relationship in concentric LV hypertrophy and by all cardiac chambers showing similar remodeling and dysfunction. Myocardial remodeling in HFPEF differs from heart failure with reduced ejection fraction, in which remodeling is driven by loss of cardiomyocytes. The new HFPEF paradigm proposes comorbidities, plasma markers of inflammation, or vascular hyperemic responses to be included in diagnostic algorithms and aims at restoring myocardial PKG activity. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetic Cardiomyopathy

            Heart failure and related morbidity and mortality are increasing at an alarming rate, in large part, because of increases in aging, obesity, and diabetes mellitus. The clinical outcomes associated with heart failure are considerably worse for patients with diabetes mellitus than for those without diabetes mellitus. In people with diabetes mellitus, the presence of myocardial dysfunction in the absence of overt clinical coronary artery disease, valvular disease, and other conventional cardiovascular risk factors, such as hypertension and dyslipidemia, has led to the descriptive terminology, diabetic cardiomyopathy. The prevalence of diabetic cardiomyopathy is increasing in parallel with the increase in diabetes mellitus. Diabetic cardiomyopathy is initially characterized by myocardial fibrosis, dysfunctional remodeling, and associated diastolic dysfunction, later by systolic dysfunction, and eventually by clinical heart failure. Impaired cardiac insulin metabolic signaling, mitochondrial dysfunction, increases in oxidative stress, reduced nitric oxide bioavailability, elevations in advanced glycation end products and collagen-based cardiomyocyte and extracellular matrix stiffness, impaired mitochondrial and cardiomyocyte calcium handling, inflammation, renin-angiotensin-aldosterone system activation, cardiac autonomic neuropathy, endoplasmic reticulum stress, microvascular dysfunction, and a myriad of cardiac metabolic abnormalities have all been implicated in the development and progression of diabetic cardiomyopathy. Molecular mechanisms linked to the underlying pathophysiological changes include abnormalities in AMP-activated protein kinase, peroxisome proliferator-activated receptors, O-linked N-acetylglucosamine, protein kinase C, microRNA, and exosome pathways. The aim of this review is to provide a contemporary view of these instigators of diabetic cardiomyopathy, as well as mechanistically based strategies for the prevention and treatment of diabetic cardiomyopathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative Stress and Inflammation: What Polyphenols Can Do for Us?

              Oxidative stress is viewed as an imbalance between the production of reactive oxygen species (ROS) and their elimination by protective mechanisms, which can lead to chronic inflammation. Oxidative stress can activate a variety of transcription factors, which lead to the differential expression of some genes involved in inflammatory pathways. The inflammation triggered by oxidative stress is the cause of many chronic diseases. Polyphenols have been proposed to be useful as adjuvant therapy for their potential anti-inflammatory effect, associated with antioxidant activity, and inhibition of enzymes involved in the production of eicosanoids. This review aims at exploring the properties of polyphenols in anti-inflammation and oxidation and the mechanisms of polyphenols inhibiting molecular signaling pathways which are activated by oxidative stress, as well as the possible roles of polyphenols in inflammation-mediated chronic disorders. Such data can be helpful for the development of future antioxidant therapeutics and new anti-inflammatory drugs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2021
                23 September 2021
                : 2021
                : 5876841
                Affiliations
                1Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
                2Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing 100053, China
                3The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
                Author notes

                Academic Editor: Yun-dai Chen

                Author information
                https://orcid.org/0000-0002-3788-9881
                https://orcid.org/0000-0002-7193-0585
                https://orcid.org/0000-0002-1955-4412
                https://orcid.org/0000-0002-0633-2271
                https://orcid.org/0000-0002-6235-2867
                https://orcid.org/0000-0002-5123-9690
                Article
                10.1155/2021/5876841
                8486530
                34603599
                6faa6805-c6cd-47e9-9b18-3333b73bc2b3
                Copyright © 2021 Xing Chang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 April 2021
                : 27 July 2021
                : 13 August 2021
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 82004233
                Funded by: Natural Science Foundation of Shandong Province
                Award ID: ZR2020MH352
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article