17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      ABI3 controls embryo degreening through Mendel's I locus

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chlorophyll (chl) is essential for light capture and is the starting point that provides the energy for photosynthesis and thus plant growth. Obviously, for this reason, retention of the green chlorophyll pigment is considered a desirable crop trait. However, the presence of chlorophyll in mature seeds can be an undesirable trait that can affect seed maturation, seed oil quality, and meal quality. Occurrence of mature green seeds in oil crops such as canola and soybean due to unfavorable weather conditions during seed maturity is known to cause severe losses in revenue. One recently identified candidate that controls the chlorophyll degradation machinery is the stay-green gene, SGR1 that was mapped to Mendel's I locus responsible for cotyledon color (yellow versus green) in peas. A defect in SGR1 leads to leaf stay-green phenotypes in Arabidopsis and rice, but the role of SGR1 in seed degreening and the signaling machinery that converges on SGR1 have remained elusive. To decipher the gene regulatory network that controls degreening in Arabidopsis, we have used an embryo stay-green mutant to demonstrate that embryo degreening is achieved by the SGR family and that this whole process is regulated by the phytohormone abscisic acid (ABA) through ABSCISIC ACID INSENSITIVE 3 (ABI3); a B3 domain transcription factor that has a highly conserved and essential role in seed maturation, conferring desiccation tolerance. Misexpression of ABI3 was sufficient to rescue cold-induced green seed phenotype in Arabidopsis. This finding reveals a mechanistic role for ABI3 during seed degreening and thus targeting of this pathway could provide a solution to the green seed problem in various oil-seed crops.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana

          The Agrobacterium vacuum infiltration method has made it possible to transform Arabidopsis thaliana without plant tissue culture or regeneration. In the present study, this method was evaluated and a substantially modified transformation method was developed. The labor-intensive vacuum infiltration process was eliminated in favor of simple dipping of developing floral tissues into a solution containing Agrobacterium tumefaciens, 5% sucrose and 500 microliters per litre of surfactant Silwet L-77. Sucrose and surfactant were critical to the success of the floral dip method. Plants inoculated when numerous immature floral buds and few siliques were present produced transformed progeny at the highest rate. Plant tissue culture media, the hormone benzylamino purine and pH adjustment were unnecessary, and Agrobacterium could be applied to plants at a range of cell densities. Repeated application of Agrobacterium improved transformation rates and overall yield of transformants approximately twofold. Covering plants for 1 day to retain humidity after inoculation also raised transformation rates twofold. Multiple ecotypes were transformable by this method. The modified method should facilitate high-throughput transformation of Arabidopsis for efforts such as T-DNA gene tagging, positional cloning, or attempts at targeted gene replacement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes.

            MAPMAN is a user-driven tool that displays large data sets onto diagrams of metabolic pathways or other processes. SCAVENGER modules assign the measured parameters to hierarchical categories (formed 'BINs', 'subBINs'). A first build of TRANSCRIPTSCAVENGER groups genes on the Arabidopsis Affymetrix 22K array into >200 hierarchical categories, providing a breakdown of central metabolism (for several pathways, down to the single enzyme level), and an overview of secondary metabolism and cellular processes. METABOLITESCAVENGER groups hundreds of metabolites into pathways or groups of structurally related compounds. An IMAGEANNOTATOR module uses these groupings to organise and display experimental data sets onto diagrams of the users' choice. A modular structure allows users to edit existing categories, add new categories and develop SCAVENGER modules for other sorts of data. MAPMAN is used to analyse two sets of 22K Affymetrix arrays that investigate the response of Arabidopsis rosettes to low sugar: one investigates the response to a 6-h extension of the night, and the other compares wild-type Columbia-0 (Col-0) and the starchless pgm mutant (plastid phosphoglucomutase) at the end of the night. There were qualitatively similar responses in both treatments. Many genes involved in photosynthesis, nutrient acquisition, amino acid, nucleotide, lipid and cell wall synthesis, cell wall modification, and RNA and protein synthesis were repressed. Many genes assigned to amino acid, nucleotide, lipid and cell wall breakdown were induced. Changed expression of genes for trehalose metabolism point to a role for trehalose-6-phosphate (Tre6P) as a starvation signal. Widespread changes in the expression of genes encoding receptor kinases, transcription factors, components of signalling pathways, proteins involved in post-translational modification and turnover, and proteins involved in the synthesis and sensing of cytokinins, abscisic acid (ABA) and ethylene revealing large-scale rewiring of the regulatory network is an early response to sugar depletion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular aspects of seed dormancy.

              Seed dormancy provides a mechanism for plants to delay germination until conditions are optimal for survival of the next generation. Dormancy release is regulated by a combination of environmental and endogenous signals with both synergistic and competing effects. Molecular studies of dormancy have correlated changes in transcriptomes, proteomes, and hormone levels with dormancy states ranging from deep primary or secondary dormancy to varying degrees of release. The balance of abscisic acid (ABA):gibberellin (GA) levels and sensitivity is a major, but not the sole, regulator of dormancy status. ABA promotes dormancy induction and maintenance, whereas GA promotes progression from release through germination; environmental signals regulate this balance by modifying the expression of biosynthetic and catabolic enzymes. Mediators of environmental and hormonal response include both positive and negative regulators, many of which are feedback-regulated to enhance or attenuate the response. The net result is a slightly heterogeneous response, thereby providing more temporal options for successful germination.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                October 01 2013
                October 01 2013
                September 16 2013
                October 01 2013
                : 110
                : 40
                : E3888-E3894
                Article
                10.1073/pnas.1308114110
                3791760
                24043799
                6fb8a445-30eb-47a5-a2ee-d29c0e6ec9e6
                © 2013
                History

                Comments

                Comment on this article