1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Amphotericin B-Loaded Extracellular Vesicles Derived from Leishmania major Enhancing Cutaneous Leishmaniasis Treatment through In Vitro and In Vivo Studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Recent studies have shown an increasing number of patients with cutaneous leishmaniasis (CL) who do not respond to pentavalent antimonials as the first line of treatment for CL. Nanocarriers such as extracellular vesicles (EVs) are efficient vehicles that might be used as drug delivery systems for the treatment of diseases. Therefore, we aimed to isolate and characterize the EVs of Leishmania major, load them with Amphotericin B (AmB), and investigate the toxicity and efficacy of the prepared drug form.

          Methods:

          The EVs of L. major were isolated, characterized, and loaded with amphotericin B (AmB), and the EVs-Amphotericin B (EVs-AmB) form was synthesized. Relevant in vitro and in vivo methods were performed to evaluate the toxicity and efficacy of EVs-AmB compared to the control.

          Results:

          The anti-leishmanial activity of the EVs-AmB showed a higher percentage inhibition (PI%) ( P = 0.023) compared to the AmB at different concentrations and time points. Obtained data showed a significant increase in the lesion size and parasite load in the lesion, PBS, and EVs mice groups in comparison with EVs-AmB, AmB, and Glucantime groups ( P < 0.05), EVs-AmB had a significant decrease in lesion sizes in comparison with AmB ( P < 0.05). Results showed that EVs-AmB decreased its toxicity to the kidneys and liver ( P < 0.05).

          Conclusion:

          EVs-AmB improved the efficacy of AmB in mouse skin lesions and reduced hepatorenal toxicity. Furthermore, EVs could be a promising nanoplatform for the delivery of AmB in CL caused by L. major.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

          ABSTRACT The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Leishmaniasis Worldwide and Global Estimates of Its Incidence

            As part of a World Health Organization-led effort to update the empirical evidence base for the leishmaniases, national experts provided leishmaniasis case data for the last 5 years and information regarding treatment and control in their respective countries and a comprehensive literature review was conducted covering publications on leishmaniasis in 98 countries and three territories (see ‘Leishmaniasis Country Profiles Text S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31, S32, S33, S34, S35, S36, S37, S38, S39, S40, S41, S42, S43, S44, S45, S46, S47, S48, S49, S50, S51, S52, S53, S54, S55, S56, S57, S58, S59, S60, S61, S62, S63, S64, S65, S66, S67, S68, S69, S70, S71, S72, S73, S74, S75, S76, S77, S78, S79, S80, S81, S82, S83, S84, S85, S86, S87, S88, S89, S90, S91, S92, S93, S94, S95, S96, S97, S98, S99, S100, S101’). Additional information was collated during meetings conducted at WHO regional level between 2007 and 2011. Two questionnaires regarding epidemiology and drug access were completed by experts and national program managers. Visceral and cutaneous leishmaniasis incidence ranges were estimated by country and epidemiological region based on reported incidence, underreporting rates if available, and the judgment of national and international experts. Based on these estimates, approximately 0.2 to 0.4 cases and 0.7 to 1.2 million VL and CL cases, respectively, occur each year. More than 90% of global VL cases occur in six countries: India, Bangladesh, Sudan, South Sudan, Ethiopia and Brazil. Cutaneous leishmaniasis is more widely distributed, with about one-third of cases occurring in each of three epidemiological regions, the Americas, the Mediterranean basin, and western Asia from the Middle East to Central Asia. The ten countries with the highest estimated case counts, Afghanistan, Algeria, Colombia, Brazil, Iran, Syria, Ethiopia, North Sudan, Costa Rica and Peru, together account for 70 to 75% of global estimated CL incidence. Mortality data were extremely sparse and generally represent hospital-based deaths only. Using an overall case-fatality rate of 10%, we reach a tentative estimate of 20,000 to 40,000 leishmaniasis deaths per year. Although the information is very poor in a number of countries, this is the first in-depth exercise to better estimate the real impact of leishmaniasis. These data should help to define control strategies and reinforce leishmaniasis advocacy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum

              Extracellular vesicles (EVs) are nano-sized vesicles containing nucleic acid and protein cargo that are released from a multitude of cell types and have gained significant interest as potential diagnostic biomarkers. Human serum is a rich source of readily accessible EVs; however, the separation of EVs from serum proteins and non-EV lipid particles represents a considerable challenge. In this study, we compared the most commonly used isolation techniques, either alone or in combination, for the isolation of EVs from 200 µl of human serum and their separation from non-EV protein and lipid particles present in serum. The size and yield of particles isolated by each method was determined by nanoparticle tracking analysis, with the variation in particle size distribution being used to determine the relative impact of lipoproteins and protein aggregates on the isolated EV population. Purification of EVs from soluble protein was determined by calculating the ratio of EV particle count to protein concentration. Finally, lipoprotein particles co-isolated with EVs was determined by Western blot analysis of lipoprotein markers APOB and APOE. Overall, this study reveals that the choice of EV isolation procedure significantly impacts EV yield from human serum, together with the presence of lipoprotein and protein contaminants.
                Bookmark

                Author and article information

                Journal
                Iran J Parasitol
                Iran J Parasitol
                IJPA
                Iranian Journal of Parasitology
                Tehran University of Medical Sciences
                1735-7020
                2008-238X
                Oct-Dec 2023
                : 18
                : 4
                : 514-525
                Affiliations
                [1. ] Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
                [2. ] Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
                [3. ] Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran
                [4. ] Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (ACECR), Tehran, Iran
                [5. ] Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
                Author notes
                Article
                IJPA-18-514
                10.18502/ijpa.v18i4.14260
                10758083
                6fce1ad1-97ed-4095-b6d9-a328bbac7713
                © 2023 Davari et al. Published by Tehran University of Medical Sciences.

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license ( https://creativecommons.org/licenses/by-nc/4.0/). Non-commercial uses of the work are permitted, provided the original work is properly cited.

                History
                : 10 January 2023
                : 19 April 2023
                Categories
                Original Article

                Parasitology
                leishmania major,extracellular vesicles,drug delivery,amphotericin b
                Parasitology
                leishmania major, extracellular vesicles, drug delivery, amphotericin b

                Comments

                Comment on this article