10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An official American Thoracic Society clinical practice guideline: diagnosis, risk stratification, and management of pulmonary hypertension of sickle cell disease.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In adults with sickle cell disease (SCD), an increased tricuspid regurgitant velocity (TRV) measured by Doppler echocardiography, an increased serum N-terminal pro-brain natriuretic peptide (NT-pro-BNP) level, and pulmonary hypertension (PH) diagnosed by right heart catheterization (RHC) are independent risk factors for mortality.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Antithrombotic therapy for venous thromboembolic disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition).

          This chapter about treatment for venous thromboembolic disease is part of the American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Grade 1 recommendations are strong and indicate that the benefits do or do not outweigh risks, burden, and costs. Grade 2 suggests that individual patient values may lead to different choices (for a full understanding of the grading, see "Grades of Recommendation" chapter). Among the key recommendations in this chapter are the following: for patients with objectively confirmed deep vein thrombosis (DVT) or pulmonary embolism (PE), we recommend anticoagulant therapy with subcutaneous (SC) low-molecular-weight heparin (LMWH), monitored IV, or SC unfractionated heparin (UFH), unmonitored weight-based SC UFH, or SC fondaparinux (all Grade 1A). For patients with a high clinical suspicion of DVT or PE, we recommend treatment with anticoagulants while awaiting the outcome of diagnostic tests (Grade 1C). For patients with confirmed PE, we recommend early evaluation of the risks to benefits of thrombolytic therapy (Grade 1C); for those with hemodynamic compromise, we recommend short-course thrombolytic therapy (Grade 1B); and for those with nonmassive PE, we recommend against the use of thrombolytic therapy (Grade 1B). In acute DVT or PE, we recommend initial treatment with LMWH, UFH or fondaparinux for at least 5 days rather than a shorter period (Grade 1C); and initiation of vitamin K antagonists (VKAs) together with LMWH, UFH, or fondaparinux on the first treatment day, and discontinuation of these heparin preparations when the international normalized ratio (INR) is > or = 2.0 for at least 24 h (Grade 1A). For patients with DVT or PE secondary to a transient (reversible) risk factor, we recommend treatment with a VKA for 3 months over treatment for shorter periods (Grade 1A). For patients with unprovoked DVT or PE, we recommend treatment with a VKA for at least 3 months (Grade 1A), and that all patients are then evaluated for the risks to benefits of indefinite therapy (Grade 1C). We recommend indefinite anticoagulant therapy for patients with a first unprovoked proximal DVT or PE and a low risk of bleeding when this is consistent with the patient's preference (Grade 1A), and for most patients with a second unprovoked DVT (Grade 1A). We recommend that the dose of VKA be adjusted to maintain a target INR of 2.5 (INR range, 2.0 to 3.0) for all treatment durations (Grade 1A). We recommend at least 3 months of treatment with LMWH for patients with VTE and cancer (Grade 1A), followed by treatment with LMWH or VKA as long as the cancer is active (Grade 1C). For prevention of postthrombotic syndrome (PTS) after proximal DVT, we recommend use of an elastic compression stocking (Grade 1A). For DVT of the upper extremity, we recommend similar treatment as for DVT of the leg (Grade 1C). Selected patients with lower-extremity (Grade 2B) and upper-extremity (Grade 2C). DVT may be considered for thrombus removal, generally using catheter-based thrombolytic techniques. For extensive superficial vein thrombosis, we recommend treatment with prophylactic or intermediate doses of LMWH or intermediate doses of UFH for 4 weeks (Grade 1B).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Causes and outcomes of the acute chest syndrome in sickle cell disease. National Acute Chest Syndrome Study Group.

            The acute chest syndrome is the leading cause of death among patients with sickle cell disease. Since its cause is largely unknown, therapy is supportive. Pilot studies with improved diagnostic techniques suggest that infection and fat embolism are underdiagnosed in patients with the syndrome. In a 30-center study, we analyzed 671 episodes of the acute chest syndrome in 538 patients with sickle cell disease to determine the cause, outcome, and response to therapy. We evaluated a treatment protocol that included matched transfusions, bronchodilators, and bronchoscopy. Samples of blood and respiratory tract secretions were sent to central laboratories for antibody testing, culture, DNA testing, and histopathological analyses. Nearly half the patients were initially admitted for another reason, mainly pain. When the acute chest syndrome was diagnosed, patients had hypoxia, decreasing hemoglobin values, and progressive multilobar pneumonia. The mean length of hospitalization was 10.5 days. Thirteen percent of patients required mechanical ventilation, and 3 percent died. Patients who were 20 or more years of age had a more severe course than those who were younger. Neurologic events occurred in 11 percent of patients, among whom 46 percent had respiratory failure. Treatment with phenotypically matched transfusions improved oxygenation, with a 1 percent rate of alloimmunization. One fifth of the patients who were treated with bronchodilators had clinical improvement. Eighty-one percent of patients who required mechanical ventilation recovered. A specific cause of the acute chest syndrome was identified in 38 percent of all episodes and 70 percent of episodes with complete data. Among the specific causes were pulmonary fat embolism and 27 different infectious pathogens. Eighteen patients died, and the most common causes of death were pulmonary emboli and infectious bronchopneumonia. Infection was a contributing factor in 56 percent of the deaths. Among patients with sickle cell disease, the acute chest syndrome is commonly precipitated by fat embolism and infection, especially community-acquired pneumonia. Among older patients and those with neurologic symptoms, the syndrome often progresses to respiratory failure. Treatment with transfusions and bronchodilators improves oxygenation, and with aggressive treatment, most patients who have respiratory failure recover.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pulmonary hypertension as a risk factor for death in patients with sickle cell disease.

              The prevalence of pulmonary hypertension in adults with sickle cell disease, the mechanism of its development, and its prospective prognostic significance are unknown. We performed Doppler echocardiographic assessments of pulmonary-artery systolic pressure in 195 consecutive patients (82 men and 113 women; mean [+/-SD] age, 36+/-12 years). Pulmonary hypertension was prospectively defined as a tricuspid regurgitant jet velocity of at least 2.5 m per second. Patients were followed for a mean of 18 months, and data were censored at the time of death or loss to follow-up. Doppler-defined pulmonary hypertension occurred in 32 percent of patients. Multiple logistic-regression analysis, with the use of the dichotomous variable of a tricuspid regurgitant jet velocity of less than 2.5 m per second or 2.5 m per second or more, identified a self-reported history of cardiovascular or renal complications, increased systolic blood pressure, high lactate dehydrogenase levels (a marker of hemolysis), high levels of alkaline phosphatase, and low transferrin levels as significant independent correlates of pulmonary hypertension. The fetal hemoglobin level, white-cell count, and platelet count and the use of hydroxyurea therapy were unrelated to pulmonary hypertension. A tricuspid regurgitant jet velocity of at least 2.5 m per second, as compared with a velocity of less than 2.5 m per second, was strongly associated with an increased risk of death (rate ratio, 10.1; 95 percent confidence interval, 2.2 to 47.0; P<0.001) and remained so after adjustment for other possible risk factors in a proportional-hazards regression model. Pulmonary hypertension, diagnosed by Doppler echocardiography, is common in adults with sickle cell disease. It appears to be a complication of chronic hemolysis, is resistant to hydroxyurea therapy, and confers a high risk of death. Therapeutic trials targeting this population of patients are indicated. Copyright 2004 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Am. J. Respir. Crit. Care Med.
                American journal of respiratory and critical care medicine
                1535-4970
                1073-449X
                Mar 15 2014
                : 189
                : 6
                Article
                10.1164/rccm.201401-0065ST
                24628312
                6fe1837d-fe77-4fb3-9a7f-c94a2704761a
                History

                Comments

                Comment on this article