15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rapid, Specific, No-wash, Far-red Fluorogen Activation in Subcellular Compartments by Targeted Fluorogen Activating Proteins

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Live cell imaging requires bright photostable dyes that can target intracellular organelles and proteins with high specificity in a no-wash protocol. Organic dyes possess the desired photochemical properties and can be covalently linked to various protein tags. The currently available fluorogenic dyes are in the green/yellow range where there is high cellular autofluorescence and the near-infrared (NIR) dyes need to be washed out. Protein-mediated activation of far-red fluorogenic dyes has the potential to address these challenges because the cell-permeant dye is small and nonfluorescent until bound to its activating protein, and this binding is rapid. In this study, three single chain variable fragment (scFv)-derived fluorogen activating proteins (FAPs), which activate far-red emitting fluorogens, were evaluated for targeting, brightness, and photostability in the cytosol, nucleus, mitochondria, peroxisomes, and endoplasmic reticulum with a cell-permeant malachite green analog in cultured mammalian cells. Efficient labeling was achieved within 20–30 min for each protein upon the addition of nM concentrations of dye, producing a signal that colocalized significantly with a linked mCerulean3 (mCer3) fluorescent protein and organelle specific dyes but showed divergent photostability and brightness properties dependent on the FAP. These FAPs and the ester of malachite green dye (MGe) can be used as specific, rapid, and wash-free labels for intracellular sites in live cells with far-red excitation and emission properties, useful in a variety of multicolor experiments.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis.

          For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A general method for the covalent labeling of fusion proteins with small molecules in vivo.

            Characterizing the movement, interactions, and chemical microenvironment of a protein inside the living cell is crucial to a detailed understanding of its function. Most strategies aimed at realizing this objective are based on genetically fusing the protein of interest to a reporter protein that monitors changes in the environment of the coupled protein. Examples include fusions with fluorescent proteins, the yeast two-hybrid system, and split ubiquitin. However, these techniques have various limitations, and considerable effort is being devoted to specific labeling of proteins in vivo with small synthetic molecules capable of probing and modulating their function. These approaches are currently based on the noncovalent binding of a small molecule to a protein, the formation of stable complexes between biarsenical compounds and peptides containing cysteines, or the use of biotin acceptor domains. Here we describe a general method for the covalent labeling of fusion proteins in vivo that complements existing methods for noncovalent labeling of proteins and that may open up new ways of studying proteins in living cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fluorogenic probes for live-cell imaging of the cytoskeleton.

              We introduce far-red, fluorogenic probes that combine minimal cytotoxicity with excellent brightness and photostability for fluorescence imaging of actin and tubulin in living cells. Applied in stimulated emission depletion (STED) microscopy, they reveal the ninefold symmetry of the centrosome and the spatial organization of actin in the axon of cultured rat neurons with a resolution unprecedented for imaging cytoskeletal structures in living cells.
                Bookmark

                Author and article information

                Journal
                ACS Chem Biol
                ACS Chem. Biol
                cb
                acbcct
                ACS Chemical Biology
                American Chemical Society
                1554-8929
                1554-8937
                04 February 2015
                15 May 2015
                : 10
                : 5
                : 1239-1246
                Affiliations
                [1]Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
                Author notes
                Article
                10.1021/cb500957k
                4867890
                25650487
                707e3773-9077-4425-997c-91d70c02d107
                Copyright © 2015 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 24 November 2014
                : 03 February 2015
                Funding
                National Institutes of Health, United States
                Categories
                Articles
                Custom metadata
                cb500957k
                cb-2014-00957k

                Biochemistry
                Biochemistry

                Comments

                Comment on this article