11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Targeted Lipidomics of Fontal Cortex and Plasma Diacylglycerols (DAG) in Mild Cognitive Impairment and Alzheimer's Disease: Validation of DAG Accumulation Early in the Pathophysiology of Alzheimer's Disease.

      Journal of Alzheimer's disease : JAD
      IOS Press
      diacylglycerols, mild cognitive impairment, monoacylglycerols, Alzheimer’s disease

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous studies have demonstrated augmented levels of diacylglycerols (DAG) in the frontal cortex and plasma of Alzheimer's disease (AD) patients. We extended these findings from non-targeted lipidomics studies to design a lipidomics platform to interrogate DAGs and monoacylglycerols (MAG) in the frontal cortex and plasma of MCI subjects. Control subjects included both aged normal controls and controls with normal cognition, but AD pathology at autopsy, individuals termed non-demented AD neuropathology. DAGs with saturated, unsaturated, and polyunsaturated fatty acid substituents were found to be elevated in MCI frontal cortex and plasma. Tandem mass spectrometry of the DAGs did not reveal any differences in the distributions of the fatty acid substitutions between MCI and control subjects. While triacylglycerols were not altered in MCI subjects there were increases in MAG levels both in the frontal cortex and plasma. In toto, increased levels of DAGs and MAGs appear to occur early in AD pathophysiology and require both further validation in a larger patient cohort and elucidation of the lipidomics alteration(s) that lead to the accumulation of DAGs in MCI subjects.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Comparative lipidomic analysis of mouse and human brain with Alzheimer disease.

          Lipids are key regulators of brain function and have been increasingly implicated in neurodegenerative disorders including Alzheimer disease (AD). Here, a systems-based approach was employed to determine the lipidome of brain tissues affected by AD. Specifically, we used liquid chromatography-mass spectrometry to profile extracts from the prefrontal cortex, entorhinal cortex, and cerebellum of late-onset AD (LOAD) patients, as well as the forebrain of three transgenic familial AD (FAD) mouse models. Although the cerebellum lacked major alterations in lipid composition, we found an elevation of a signaling pool of diacylglycerol as well as sphingolipids in the prefrontal cortex of AD patients. Furthermore, the diseased entorhinal cortex showed specific enrichment of lysobisphosphatidic acid, sphingomyelin, the ganglioside GM3, and cholesterol esters, all of which suggest common pathogenic mechanisms associated with endolysosomal storage disorders. Importantly, a significant increase in cholesterol esters and GM3 was recapitulated in the transgenic FAD models, suggesting that these mice are relevant tools to study aberrant lipid metabolism of endolysosomal dysfunction associated with AD. Finally, genetic ablation of phospholipase D(2), which rescues the synaptic and behavioral deficits of an FAD mouse model, fully normalizes GM3 levels. These data thus unmask a cross-talk between the metabolism of phosphatidic acid, the product of phospholipase D(2), and gangliosides, and point to a central role of ganglioside anomalies in AD pathogenesis. Overall, our study highlights the hypothesis generating potential of lipidomics and identifies novel region-specific lipid anomalies potentially linked to AD pathogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diacylglycerol, when simplicity becomes complex.

            Diacylglycerol (DAG) has unique functions as a basic component of membranes, an intermediate in lipid metabolism and a key element in lipid-mediated signaling. In eukaryotes, for example, impaired DAG generation and/or consumption have severe effects on organ development and cell growth associated with diseases such as cancer, diabetes, immune system disorders and Alzheimer's disease. Although DAG has been studied intensively as a signaling lipid, early models of its function are no longer adequate to explain its numerous roles. The interplay between enzymes that control DAG levels, the identification of families of DAG-regulated proteins, and the overlap among DAG metabolic and signaling processes are providing new interpretations of DAG function. Recent discoveries are also delineating the complex and strategic role of DAG in regulating biochemical networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors

              The endocannabinoid 2-arachidonoylglycerol (2-AG) is a lipid mediator involved in various physiological processes. In response to neural activity, 2-AG is synthesized post-synaptically, then activates pre-synaptic cannabinoid CB1 receptors (CB1Rs) in a retrograde manner, resulting in transient and long-lasting reduction of neurotransmitter release. The signalling competence of 2-AG is tightly regulated by the balanced action between ‘on demand’ biosynthesis and degradation. We review recent research on monoacylglycerol lipase (MAGL), ABHD6 and ABHD12, three serine hydrolases that together account for approx. 99% of brain 2-AG hydrolase activity. MAGL is responsible for approx. 85% of 2-AG hydrolysis and colocalizes with CB1R in axon terminals. It is therefore ideally positioned to terminate 2-AG-CB1R signalling regardless of the source of this endocannabinoid. Its acute pharmacological inhibition leads to 2-AG accumulation and CB1R-mediated behavioural responses. Chronic MAGL inactivation results in 2-AG overload, desensitization of CB1R signalling and behavioural tolerance. ABHD6 accounts for approx. 4% of brain 2-AG hydrolase activity but in neurones it rivals MAGL in efficacy. Neuronal ABHD6 resides post-synaptically, often juxtaposed with CB1Rs, and its acute inhibition leads to activity-dependent accumulation of 2-AG. In cortical slices, selective ABHD6 blockade facilitates CB1R-dependent long-term synaptic depression. ABHD6 is therefore positioned to guard intracellular pools of 2-AG at the site of generation. ABHD12 is highly expressed in microglia and accounts for approx. 9% of total brain 2-AG hydrolysis. Mutations in ABHD12 gene are causally linked to a neurodegenerative disease called PHARC. Whether ABHD12 qualifies as a bona fide member to the endocannabinoid system remains to be established.
                Bookmark

                Author and article information

                Journal
                26402017
                4713833
                10.3233/JAD-150336

                diacylglycerols,mild cognitive impairment,monoacylglycerols,Alzheimer’s disease

                Comments

                Comment on this article